Wei-Chun Lin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/345810/publications.pdf Version: 2024-02-01

WELCHIN LIN

#	Article	IF	CITATIONS
1	Novel high-entropy ceramic/carbon composite materials for the decomposition of organic pollutants. Materials Chemistry and Physics, 2022, 275, 125274.	2.0	10
2	X-ray Photoelectron Spectroscopy Equipped with Gas Cluster Ion Beams for Evaluation of the Sputtering Behavior of Various Nanomaterials. ACS Applied Nano Materials, 2022, 5, 4260-4268.	2.4	7
3	In situ XPS investigation of the X-ray-triggered decomposition of perovskites in ultrahigh vacuum condition. Npj Materials Degradation, 2021, 5, .	2.6	36
4	Auger Electron Spectroscopy Analysis of the Thermally Induced Degradation of MAPbI ₃ Perovskite Films. ACS Omega, 2021, 6, 34606-34614.	1.6	5
5	Study on Optical and Electrical Properties of Thermally Evaporated Tin Oxide Thin Films for Perovskite Solar Cells. Crystals, 2021, 11, 1380.	1.0	4
6	Functional Superhydrophobic Surfaces with Spatially Programmable Adhesion. Polymers, 2020, 12, 2968.	2.0	2
7	Highly Efficient Nonfullerene Organic Photovoltaic Devices with 10% Power Conversion Efficiency Enabled by a Fine‶uned and Solutionâ€Processed Hole‶ransporting Layer. Solar Rrl, 2020, 4, 2000223.	3.1	16
8	Comparing Titaniaâ€Based Architectures for Perovskite Solar Cells: A Combined Optical–Electronic Loss Analysis. Small Methods, 2018, 2, 1700275.	4.6	3
9	3D In Situ ToFâ€6IMS Imaging of Perovskite Films under Controlled Humidity Environmental Conditions. Advanced Materials Interfaces, 2017, 4, 1600673.	1.9	32
10	Interpenetration of CH3NH3PbI3 and TiO2 improves perovskite solar cells while TiO2 expansion leads to degradation. Physical Chemistry Chemical Physics, 2017, 19, 21407-21413.	1.3	8
11	Complete Conversion of PbI 2 to Methyl Ammonium PbI 3 Improves Perovskite Solar Cell Efficiency. ChemPhysChem, 2017, 18, 47-50.	1.0	10
12	Imaging the Long Transport Lengths of Photo-generated Carriers in Oriented Perovskite Films. Nano Letters, 2016, 16, 7925-7929.	4.5	50
13	Curing of degraded MAPbI ₃ perovskite films. RSC Advances, 2016, 6, 60620-60625.	1.7	15
14	Improving the electron mobility of TiO2 nanorods for enhanced efficiency of a polymer–nanoparticle solar cell. CrystEngComm, 2012, 14, 4772.	1.3	26
15	The role of the auxiliary atomic ion beam in C ₆₀ ⁺ –Ar ⁺ co-sputtering. Analyst, The, 2011, 136, 941-946.	1.7	8
16	Polyol synthesis of polycrystalline cuprous oxide nanoribbons and their growth chemistry. Journal of Nanoparticle Research, 2011, 13, 669-682.	0.8	9
17	Effect of fabrication process on the microstructure and the efficiency of organic light-emitting diode. Organic Electronics, 2009, 10, 459-464.	1.4	31
18	Migration of small molecules during the degradation of organic light-emitting diodes. Organic Electronics, 2009, 10, 581-586.	1.4	42

Wei-Chun Lin

#	Article	IF	CITATIONS
19	Three-Dimensional Nanoscale Imaging of Polymer Bulk-Heterojunction by Scanning Electrical Potential Microscopy and C ₆₀ ⁺ Cluster Ion Slicing. Analytical Chemistry, 2009, 81, 8936-8941.	3.2	21
20	Sputter-induced chemical transformation in oxoanions by combination of C60+ and Ar+ ion beams analyzed with X-ray photoelectron spectrometry. Analyst, The, 2009, 134, 945.	1.7	43
21	Tuning the surface potential of gold substrates arbitrarily with self-assembled monolayers with mixed functional groups. Physical Chemistry Chemical Physics, 2009, 11, 6199.	1.3	62
22	Sputter damage in Si (001) surface by combination of C60+ and Ar+ ion beams. Applied Surface Science, 2008, 255, 2490-2493.	3.1	18
23	Depth Profiling of Organic Films with X-ray Photoelectron Spectroscopy Using C60+and Ar+Co-Sputtering. Analytical Chemistry, 2008, 80, 3412-3415.	3.2	62