Jinquan Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3458000/publications.pdf

Version: 2024-02-01

567281 642732 23 645 15 23 citations h-index g-index papers 23 23 23 655 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Spatial heterogeneity of temperature sensitivity of soil respiration: A global analysis of field observations. Soil Biology and Biochemistry, 2020, 141, 107675.	8.8	65
2	Biochar decreased the temperature sensitivity of soil carbon decomposition in a paddy field. Agriculture, Ecosystems and Environment, 2017, 249, 156-164.	5.3	54
3	Biogeographic variation in temperature sensitivity of decomposition in forest soils. Global Change Biology, 2020, 26, 1873-1885.	9.5	49
4	The temperature sensitivity of soil organic carbon decomposition is greater in subsoil than in topsoil during laboratory incubation. Scientific Reports, 2017, 7, 5181.	3.3	45
5	Depth dependence of soil carbon temperature sensitivity across Tibetan permafrost regions. Soil Biology and Biochemistry, 2018, 126, 82-90.	8.8	45
6	Rising Temperature May Trigger Deep Soil Carbon Loss Across Forest Ecosystems. Advanced Science, 2020, 7, 2001242.	11.2	42
7	Spatiotemporal variability of fire effects on soil carbon and nitrogen: A global metaâ€analysis. Global Change Biology, 2021, 27, 4196-4206.	9.5	35
8	Soil physico-chemical properties are more important than microbial diversity and enzyme activity in controlling carbon and nitrogen stocks near Sydney, Australia. Geoderma, 2020, 366, 114201.	5.1	27
9	Root effects on the temperature sensitivity of soil respiration depend on climatic condition and ecosystem type. Soil and Tillage Research, 2020, 199, 104574.	5.6	27
10	Biochar aging increased microbial carbon use efficiency but decreased biomass turnover time. Geoderma, 2021, 382, 114710.	5.1	26
11	Temperature adaptation of soil microbial respiration in alpine, boreal and tropical soils: An application of the square root (Ratkowsky) model. Global Change Biology, 2021, 27, 1281-1292.	9.5	26
12	Microbial carbon use efficiency, biomass residence time and temperature sensitivity across ecosystems and soil depths. Soil Biology and Biochemistry, 2021, 154, 108117.	8.8	26
13	Carbon quality mediates the temperature sensitivity of soil organic carbon decomposition in managed ecosystems. Agriculture, Ecosystems and Environment, 2017, 250, 44-50.	5.3	23
14	Soil physico-chemical properties are critical for predicting carbon storage and nutrient availability across Australia. Environmental Research Letters, 2020, 15, 094088.	5.2	22
15	Different responses of root exudates to biochar application under elevated CO2. Agriculture, Ecosystems and Environment, 2020, 301, 107061.	5.3	21
16	Does root respiration in Australian rainforest tree seedlings acclimate to experimental warming?. Tree Physiology, 2020, 40, 1192-1204.	3.1	19
17	An incubation study of temperature sensitivity of greenhouse gas fluxes in three land-cover types near Sydney, Australia. Science of the Total Environment, 2019, 688, 324-332.	8.0	17
18	Biochar-induced reductions in the rhizosphere priming effect are weaker under elevated CO2. Soil Biology and Biochemistry, 2020, 142, 107700.	8.8	15

Jinquan Li

#	Article	IF	CITATIONS
19	Thermal adaptation occurs in the respiration and growth of widely distributed bacteria. Global Change Biology, 2022, 28, 2820-2829.	9.5	15
20	Key microorganisms mediate soil carbon-climate feedbacks in forest ecosystems. Science Bulletin, 2021, 66, 2036-2044.	9.0	14
21	Enzymic moderations of bacterial and fungal communities on short- and long-term warming impacts on soil organic carbon. Science of the Total Environment, 2022, 804, 150197.	8.0	14
22	Ecosystem type drives tea litter decomposition and associated prokaryotic microbiome communities in freshwater and coastal wetlands at a continental scale. Science of the Total Environment, 2021, 782, 146819.	8.0	12
23	Alpine meadow degradation enhances the temperature sensitivity of soil carbon decomposition on the Qinghai–Tibetan plateau. Applied Soil Ecology, 2022, 170, 104290.	4.3	6