Tadeusz Antczak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3457766/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Optimality conditions and Mond–Weir duality for a class of differentiable semi-infinite multiobjective programming problems with vanishing constraints. 4or, 2022, 20, 417-442.	1.6	8
2	The \$ F \$-objective function method for differentiable interval-valued vector optimization problems. Journal of Industrial and Management Optimization, 2021, 17, 2761.	1.3	0
3	A new approximation approach to optimality and duality for a class of nonconvex differentiable vector optimization problems. Computational Management Science, 2021, 18, 49-71.	1.3	0
4	Vector Critical Points and Cone Efficiency in Nonsmooth Vector Optimization. Taiwanese Journal of Mathematics, 2021, 25, .	0.4	0
5	Parametric approach for approximate efficiency of robust multiobjective fractional programming problems. Mathematical Methods in the Applied Sciences, 2021, 44, 11211-11230.	2.3	6
6	E-differentiable minimax programming under E-convexity. Annals of Operations Research, 2021, 300, 1-22.	4.1	4
7	A necessary and sufficient condition on the equivalence between local and global optimal solutions in variational control problems. Nonlinear Analysis: Theory, Methods & Applications, 2020, 191, 111640.	1.1	16
8	On Approximate Efficiency for Nonsmooth Robust Vector Optimization Problems. Acta Mathematica Scientia, 2020, 40, 887-902.	1.0	6
9	HIGHER ORDER DUALITY FOR A NEW CLASS OF NONCONVEX SEMI-INFINITE MULTIOBJECTIVE FRACTIONAL PROGRAMMING WITH SUPPORT FUNCTIONS. Journal of Applied Analysis and Computation, 2020, 10, 2806-2825.	O.5	0
10	The Modified Objective Function Method for Univex Multiobjective Variational Problems. Bulletin of the Iranian Mathematical Society, 2019, 45, 267-282.	1.0	5
11	Optimality and duality results for E-differentiable multiobjective fractional programming problems under E-convexity. Journal of Inequalities and Applications, 2019, 2019, .	1.1	9
12	Exactness of the absolute value penalty function method for nonsmooth â€invex optimization problems. International Transactions in Operational Research, 2019, 26, 1504-1526.	2.7	1
13	On equivalence between a variational problem and its modified variational problem with the Εâ€objective function under invexity. International Transactions in Operational Research, 2019, 26, 2053-2070.	2.7	9
14	E-optimality conditions and Wolfe E-duality for E-differentiable vector optimization problems with inequality and equality constraints. Journal of Nonlinear Science and Applications, 2019, 12, 745-764.	1.0	17
15	Higher-order duality results for a new class of nonconvex nonsmooth multiobjective programming problems. Filomat, 2019, 33, 1619-1639.	0.5	0
16	Vector Exponential Penalty Function Method for Nondifferentiable Multiobjective Programming Problems. Bulletin of the Malaysian Mathematical Sciences Society, 2018, 41, 657.	0.9	2
17	Semi-infinite minimax fractional programming under (Φ, <i>Ï</i>)- <i>V</i> -invexity and generalised (Φ, <i>Ï</i>)- <i>V</i> -invexity. Optimality. International Journal of Operational Research, 2018, 31, 164.	0.2	0
18	Parametric nondifferentiable multiobjective fractional programming under (b;;;)-univexity. Turkish Journal of Mathematics, 2018, 42, 2125-2147.	0.7	2

TADEUSZ ANTCZAK

#	Article	IF	CITATIONS
19	ÎApproximation Method for Non-convex Multiobjective Variational Problems. Numerical Functional Analysis and Optimization, 2017, 38, 1125-1142.	1.4	1
20	The minimal criterion for the equivalence between local and global optimal solutions in nondifferentiable optimization problem. Mathematical Methods in the Applied Sciences, 2017, 40, 6556-6564.	2.3	13
21	Optimality Conditions and Duality Results for a Class of Differentiable Vector Optimization Problems with the Multiple Interval-Valued Objective Function. , 2017, , .		0
22	Optimality conditions and duality results for nonsmooth vector optimization problems with the multiple interval-valued objective function. Acta Mathematica Scientia, 2017, 37, 1133-1150.	1.0	21
23	Saddle point criteria in semi-infinite minimax fractional programming under (Φ,ï)-invexity. Filomat, 2017, 31, 2557-2574.	0.5	2
24	Parametric approach to multitime multiobjective fractional variational problems under (<i>F</i> , <i>I</i>)-convexity. Optimal Control Applications and Methods, 2016, 37, 831-847.	2.1	13
25	The Exactness Property of the Vector Exact I1 Penalty Function Method in Nondifferentiable Invex Multiobjective Programming. Numerical Functional Analysis and Optimization, 2016, 37, 1465-1487.	1.4	1
26	The exact absolute value penalty function method for identifying strict global minima of order m in nonconvex nonsmooth programming. Optimization Letters, 2016, 10, 1561-1576.	1.6	0
27	Multiobjective programming under nondifferentiable G-V-invexity. Filomat, 2016, 30, 2909-2923.	0.5	3
28	Sufficient optimality conditions for semi-infinite multiobjective fractional programming under (句弟-V-invexity and generalized (句弟-V-invexity. Filomat, 2016, 30, 3649-3665.	0.5	4
29	Parametric Saddle Point Criteria in Semi-Infinite Minimax Fractional Programming Problems Under (<i>p</i> , <i>r</i>)-Invexity. Numerical Functional Analysis and Optimization, 2015, 36, 1-28.	1.4	5
30	On G-invexity-type nonlinear programming problems. International Journal of Optimization and Control: Theories and Applications, 2015, 5, 13-20.	1.7	0
31	Saddle point criteria and Wolfe duality in nonsmooth (Φ, Ï)-invex vector optimization problems with inequality and equality constraints. International Journal of Computer Mathematics, 2015, 92, 882-907.	1.8	6
32	Sufficient optimality criteria and duality for multiobjective variational control problems with \$\$G\$\$ G -type I objective and constraint functions. Journal of Global Optimization, 2015, 61, 695-720.	1.8	2
33	Proper efficiency and duality for a new class of nonconvex multitime multiobjective variational problems. Journal of Inequalities and Applications, 2014, 2014, .	1.1	10
34	Comments on "Sufficiency and duality for multiobjective variational control problems with <mml:math <br="" altimg="si1.gif" display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML">overflow="scroll"><mml:mi>G</mml:mi></mml:math> -invexity―Computers and Mathematics with Applications 63, 838–850 (2012). Computers and Mathematics With Applications, 2014, 66, 2595-2596.	2.7	0
35	Duality for multiobjective variational control problems with \$\$(Phi , ho)\$\$ (Φ , ï•) -invexity. Calcolo, 2014, 51, 393-421.	1.1	6
36	On efficiency and mixed duality for a new class of nonconvex multiobjective variational control problems. Journal of Global Optimization, 2014, 59, 757-785.	1.8	12

# 37	ARTICLE Second order <mml:math <br="" altimg="si1.gif" xmlns:mml="http://www.w3.org/1998/Wath/MathWL">overflow="scroll"><mml:mrow><mml:mfenced close=")" open="("><mml:mrow><mml:mi mathvariant="normal">1 { <mml:mtext>,</mml:mtext><mml:mi>i</mml:mi></mml:mi </mml:mrow>and duality for semi-infinite minimax fractional programming. Applied Mathematics and Computation,</mml:mfenced></mml:mrow></mml:math>	IF ced≥s≊/mm	CITATIONS nl:n8row>
38	2014, 227, 001-056. Sufficient optimality criteria and duality for multiobjective variational control problems with B-(p,r)-invex functions. Opuscula Mathematica, 2014, 34, 665.	0.8	7
39	\$left(Phi ,ho ight)\$-MONOTONICITY AND GENERALIZED \$left(Phi ,ho ight)\$-MONOTONICITY. Taiwanese Journal of Mathematics, 2014, 18, .	0.4	0
40	The Exact l 1 Penalty Function Method for Constrained Nonsmooth Invex Optimization Problems. International Federation for Information Processing, 2013, , 461-470.	0.4	8
41	Optimality and duality for minimax fractional programming with support functions underB-(p,r)-Type I assumptions. Mathematical and Computer Modelling, 2013, 57, 1083-1100.	2.0	6
42	Nondifferentiable (Φ,Ï)-typeÂl and generalized (Φ,Ï)-typeÂl functions in nonsmooth vector optimization. Journal of Applied Analysis, 2013, 19, .	0.5	1
43	SADDLE POINT CRITERIA AND THE EXACT MINIMAX PENALTY FUNCTION METHOD IN NONCONVEX PROGRAMMING. Taiwanese Journal of Mathematics, 2013, 17, .	0.4	4
44	The vector exact l1 penalty method for nondifferentiable convex multiobjective programming problems. Applied Mathematics and Computation, 2012, 218, 9095-9106.	2.2	9
45	Proper efficiency conditions and duality results for nonsmooth vector optimization in Banach spaces under -invexity. Nonlinear Analysis: Theory, Methods & Applications, 2012, 75, 3107-3121. The <mml:math <="" altimg="si1.gif" display="inline" td="" xmlns:mml="http://www.w3.org/1998/Math/MathML"><td>1.1</td><td>11</td></mml:math>	1.1	11
46	overflow="scroll"> <mml:msub><mml:mrow><mml:mi>l</mml:mi></mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow><mml:mrow< td=""><td>:mn>2.0</td><td>nl:mrow>5</td></mml:mrow<></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:mrow></mml:msub>	:mn>2.0	nl:mrow>5
47	everflow="scroll">> mml:m. Mathematical and Computer Modelling, 2011, 54 1966-1978. Characterization of vector strict global minimizers of order 2 in differentiable vector optimization problems under a new approximation method. Journal of Computational and Applied Mathematics, 2011, 235, 4991-5000.	2.0	1
48	A new exact exponential penalty function method and nonconvex mathematical programming. Applied Mathematics and Computation, 2011, 217, 6652-6662.	2.2	14
49	Nonsmooth minimax programming under locally Lipschitz (Φ,Ï)-invexity. Applied Mathematics and Computation, 2011, 217, 9606-9624.	2.2	13
50	A new characterization of (weak) Pareto optimality for differentiable vector optimization problems with <mml:math <br="" altimg="si1.gif" display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML">overflow="scroll"><mml:mi>G</mml:mi></mml:math> -invex functions. Mathematical and Computer Modelling, 2011, 54, 59-68.	2.0	2
51	xmlns:xocs="http://www.elsevier.com/xml/xocs/dtd" xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML"	2.7	3
52	G-saddle point criteria and G-Wolfe duality in differentiate mathematical programming. Journal of Information and Optimization Sciences, 2010, 31, 63-85.	0.3	3
53	THE I1 PENALTY FUNCTION METHOD FOR NONCONVEX DIFFERENTIABLE OPTIMIZATION PROBLEMS WITH INEQUALITY CONSTRAINTS. Asia-Pacific Journal of Operational Research, 2010, 27, 559-576.	1.3	10
54	(\hat{l}_1^+, \hat{l}) -Invexity in Nonsmooth Optimization. Numerical Functional Analysis and Optimization, 2010, 32, 1-25.	1.4	18

TADEUSZ ANTCZAK

#	Article	IF	CITATIONS
55	GeneralizedB-(p,r)-Invexity Functions and Nonlinear Mathematical Programming. Numerical Functional Analysis and Optimization, 2009, 30, 1-22.	1.4	20
56	A second order Îapproximation method for constrained optimization problems involving second order invex functions. Applications of Mathematics, 2009, 54, 433-445.	0.9	3
57	On G-invex multiobjective programming. Part II. Duality. Journal of Global Optimization, 2009, 43, 111-140.	1.8	21
58	On G-invex multiobjective programming. Part I. Optimality. Journal of Global Optimization, 2009, 43, 97-109.	1.8	34
59	Optimality and duality for nonsmooth multiobjective programming problems with V-r-invexity. Journal of Global Optimization, 2009, 45, 319-334.	1.8	18
60	Penalty function methods and a duality gap for invex optimization problems. Nonlinear Analysis: Theory, Methods & Applications, 2009, 71, 3322-3332.	1.1	6
61	Exact penalty functions method for mathematical programming problems involving invex functions. European Journal of Operational Research, 2009, 198, 29-36.	5.7	47
62	Optimality conditions and duality for nondifferentiable multiobjective programming problems involving d-r-type I functions. Journal of Computational and Applied Mathematics, 2009, 225, 236-250.	2.0	10
63	G-pre-invex functions in mathematical programming. Journal of Computational and Applied Mathematics, 2008, 217, 212-226. Generalized fractional minimax programming with <mml:math <="" altimg="si1.gif" display="inline" td=""><td>2.0</td><td>23</td></mml:math>	2.0	23
64	overflow= scroll_xmins:xocs= http://www.elsevier.com/xml/xocs/dtd xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.elsevier.com/xml/ja/dtd" xmlns:ja="http://www.elsevier.com/xml/ja/dtd" xmlns:mml="http://www.w3.org/1998/Math/MathML"	2.7	22
65	AN 1-APPROXIMATION METHOD FOR NONSMOOTH MULTIOBJECTIVE PROGRAMMING PROBLEMS. ANZIAM Journal, 2008, 49, 309.	0.2	3
66	A Modified Objective Function Method in Mathematical Programming with Second Order Invexity. Numerical Functional Analysis and Optimization, 2007, 28, 1-12.	1.4	10
67	New optimality conditions and duality results of type in differentiable mathematical programming. Nonlinear Analysis: Theory, Methods & Applications, 2007, 66, 1617-1632.	1.1	44
68	An Î-approximation approach to duality in mathematical programming problems involving r-invex functions. Journal of Mathematical Analysis and Applications, 2006, 315, 555-567.	1.0	2
69	A modified objective function method for solving nonlinear multiobjective fractional programming problems. Journal of Mathematical Analysis and Applications, 2006, 322, 971-989.	1.0	11
70	AN ÎAPPROXIMATION APPROACH IN NONLINEAR VECTOR OPTIMIZATION WITH UNIVEX FUNCTIONS. Asia-Pacific Journal of Operational Research, 2006, 23, 525-542.	1.3	5
71	Saddle point criteria and duality in multiobjective programming via an Îapproximation method. ANZIAM Journal, 2005, 47, 155-172.	0.2	8
72	A new method of solving nonlinear mathematical programming problems involving r-invex functions. Journal of Mathematical Analysis and Applications, 2005, 311, 313-323.	1.0	5

TADEUSZ ANTCZAK

#	Article	IF	CITATIONS
73	Relationships between pre-invex concepts. Nonlinear Analysis: Theory, Methods & Applications, 2005, 60, 349-367.	1.1	11
74	Mean value in invexity analysis. Nonlinear Analysis: Theory, Methods & Applications, 2005, 60, 1473-1484.	1.1	95
75	An -approximation method in nonlinear vector optimization. Nonlinear Analysis: Theory, Methods & Applications, 2005, 63, 225-236.	1.1	42
76	(p,r)-Invexity in multiobjective programming. European Journal of Operational Research, 2004, 152, 72-87.	5.7	18
77	Minimax programming under (p,r)-invexity. European Journal of Operational Research, 2004, 158, 1-19.	5.7	17
78	An ÎApproximation Approach for Nonlinear Mathematical Programming Problems Involving Invex Functions. Numerical Functional Analysis and Optimization, 2004, 25, 423-438.	1.4	14
79	A New Approach to Multiobjective Programming with a Modified Objective Function. Journal of Global Optimization, 2003, 27, 485-495.	1.8	37
80	A class of B-(p,r)-invex functions and mathematical programming. Journal of Mathematical Analysis and Applications, 2003, 286, 187-206.	1.0	39
81	Generalized (p, r)-Invexity in Mathematical Programming. Numerical Functional Analysis and Optimization, 2003, 24, 437-453.	1.4	10
82	LIPSCHITZr-INVEX FUNCTIONS AND NONSMOOTH PROGRAMMING. Numerical Functional Analysis and Optimization, 2002, 23, 265-283.	1.4	14
83	Multiobjective programming under d-invexity. European Journal of Operational Research, 2002, 137, 28-36.	5.7	32
84	(p,r)-Invex Sets and Functions. Journal of Mathematical Analysis and Applications, 2001, 263, 355-379.	1.0	114
85	On(p,r)-Invexity-Type Nonlinear Programming Problems. Journal of Mathematical Analysis and Applications, 2001, 264, 382-397.	1.0	15
86	Optimality conditions for invex nonsmooth optimization problems with fuzzy objective functions. Fuzzy Optimization and Decision Making, 0, , 1.	5.5	0