Dolan Sondhi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3457684/publications.pdf Version: 2024-02-01

DOLAN SONDHI

#	Article	IF	CITATIONS
1	Treatment of Late Infantile Neuronal Ceroid Lipofuscinosis by CNS Administration of a Serotype 2 Adeno-Associated Virus Expressing CLN2 cDNA. Human Gene Therapy, 2008, 19, 463-474.	2.7	366
2	Enhanced Survival of the LINCL Mouse Following CLN2 Gene Transfer Using the rh.10 Rhesus Macaque-derived Adeno-associated Virus Vector. Molecular Therapy, 2007, 15, 481-491.	8.2	153
3	Administration of a Replication-Deficient Adeno-Associated Virus Gene Transfer Vector Expressing the HumanCLN2cDNA to the Brain of Children with Late Infantile Neuronal Ceroid Lipofuscinosis. Human Gene Therapy, 2004, 15, 1131-1154.	2.7	118
4	AAVrh.10-Mediated APOE2 Central Nervous System Gene Therapy for APOE4-Associated Alzheimer's Disease. Human Gene Therapy Clinical Development, 2018, 29, 24-47.	3.1	90
5	Long-Term Expression and Safety of Administration of AAVrh.10hCLN2 to the Brain of Rats and Nonhuman Primates for the Treatment of Late Infantile Neuronal Ceroid Lipofuscinosis. Human Gene Therapy Methods, 2012, 23, 324-335.	2.1	84
6	Disease characteristics and progression in patients with late-infantile neuronal ceroid lipofuscinosis type 2 (CLN2) disease: an observational cohort study. The Lancet Child and Adolescent Health, 2018, 2, 582-590.	5.6	84
7	Intra-arterial delivery of AAV vectors to the mouse brain after mannitol mediated blood brain barrier disruption. Journal of Controlled Release, 2014, 196, 71-78.	9.9	70
8	Intracerebral Gene Therapy Using AAVrh.10-hARSA Recombinant Vector to Treat Patients with Early-Onset Forms of Metachromatic Leukodystrophy: Preclinical Feasibility and Safety Assessments in Nonhuman Primates. Human Gene Therapy Clinical Development, 2015, 26, 113-124.	3.1	68
9	Gene therapy for metachromatic leukodystrophy. Journal of Neuroscience Research, 2016, 94, 1169-1179.	2.9	64
10	Gene therapy for late infantile neuronal ceroid lipofuscinosis: neurosurgical considerations. Journal of Neurosurgery: Pediatrics, 2010, 6, 115-122.	1.3	60
11	Survival advantage of neonatal CNS gene transfer for late infantile neuronal ceroid lipofuscinosis. Experimental Neurology, 2008, 213, 18-27.	4.1	59
12	Intracerebral adeno-associated virus gene delivery of apolipoprotein E2 markedly reduces brain amyloid pathology in Alzheimer's disease mouse models. Neurobiology of Aging, 2016, 44, 159-172.	3.1	59
13	Vectored Intracerebral Immunization with the Anti-Tau Monoclonal Antibody PHF1 Markedly Reduces Tau Pathology in Mutant Tau Transgenic Mice. Journal of Neuroscience, 2016, 36, 12425-12435.	3.6	53
14	Partial Correction of the CNS Lysosomal Storage Defect in a Mouse Model of Juvenile Neuronal Ceroid Lipofuscinosis by Neonatal CNS Administration of an Adeno-Associated Virus Serotype rh.10 Vector Expressing the Human <i>CLN3</i> Gene. Human Gene Therapy, 2014, 25, 223-239.	2.7	37
15	Genetic Modification of the Lung Directed Toward Treatment of Human Disease. Human Gene Therapy, 2017, 28, 3-84.	2.7	37
16	Spectrum of Ocular Manifestations inÂCLN2-Associated Batten (Jansky-Bielschowsky)ÂDisease Correlate with Advancing Age and Deteriorating Neurological Function. PLoS ONE, 2013, 8, e73128.	2.5	36
17	Slowing late infantile Batten disease by direct brain parenchymal administration of a rh.10 adeno-associated virus expressing <i>CLN2</i> . Science Translational Medicine, 2020, 12, .	12.4	35
18	Feasibility of Gene Therapy for Late Neuronal Ceroid Lipofuscinosis. Archives of Neurology, 2001, 58, 1793.	4.5	33

Dolan Sondhi

#	Article	IF	CITATIONS
19	Anti-hIgE gene therapy of peanut-induced anaphylaxis in a humanized murine model of peanut allergy. Journal of Allergy and Clinical Immunology, 2016, 138, 1652-1662.e7.	2.9	33
20	Gene therapy for C1 esterase inhibitor deficiency in a Murine Model of Hereditary angioedema. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 1081-1089.	5.7	31
21	Biology of the Adrenal Gland Cortex Obviates Effective Use of Adeno-Associated Virus Vectors to Treat Hereditary Adrenal Disorders. Human Gene Therapy, 2018, 29, 403-412.	2.7	29
22	Stress-Induced Mouse Model of the Cardiac Manifestations of Friedreich's Ataxia Corrected by AAV-mediated Gene Therapy. Human Gene Therapy, 2020, 31, 819-827.	2.7	23
23	Untargeted Metabolite Profiling of Cerebrospinal Fluid Uncovers Biomarkers for Severity of Late Infantile Neuronal Ceroid Lipofuscinosis (CLN2, Batten Disease). Scientific Reports, 2018, 8, 15229.	3.3	21
24	Advances in the treatment of neuronal ceroid lipofuscinosis. Expert Opinion on Orphan Drugs, 2019, 7, 473-500.	0.8	20
25	Brain Region–Specific Degeneration with Disease Progression in Late Infantile Neuronal Ceroid Lipofuscinosis (CLN2 Disease). American Journal of Neuroradiology, 2016, 37, 1160-1169.	2.4	19
26	Anti-Epidermal Growth Factor Receptor Gene Therapy for Glioblastoma. PLoS ONE, 2016, 11, e0162978.	2.5	19
27	<i>In Vivo</i> Potency Assay for Adeno-Associated Virus–Based Gene Therapy Vectors Using AAVrh.10 as an Example. Human Gene Therapy Methods, 2018, 29, 146-155.	2.1	18
28	Safety of Direct Intraparenchymal AAVrh.10-Mediated Central Nervous System Gene Therapy for Metachromatic Leukodystrophy. Human Gene Therapy, 2021, 32, 563-580.	2.7	18
29	Cocaine vaccine dAd5GNE protects against moderate daily and high-dose "binge―cocaine use. PLoS ONE, 2020, 15, e0239780.	2.5	18
30	Attenuation of the Niemann-Pick type C2 disease phenotype by intracisternal administration of an AAVrh.10 vector expressing Npc2. Experimental Neurology, 2018, 306, 22-33.	4.1	16
31	Symmetric Age Association of Retinal Degeneration in Patients with CLN2-Associated Batten Disease. Ophthalmology Retina, 2020, 4, 728-736.	2.4	14
32	Intrapleural Gene Therapy for Alpha-1 Antitrypsin Deficiency-Related Lung Disease. Chronic Obstructive Pulmonary Diseases (Miami, Fla), 2018, 5, 244-257.	0.7	14
33	Anti-Phospho-Tau Gene Therapy for Chronic Traumatic Encephalopathy. Human Gene Therapy, 2020, 31, 57-69.	2.7	13
34	Cannulation of the internal carotid artery in mice: A novel technique for intra-arterial delivery of therapeutics. Journal of Neuroscience Methods, 2014, 222, 106-110.	2.5	11
35	Longâ€ŧerm functional correction of cystathionine βâ€synthase deficiency in mice by adenoâ€essociated viral gene therapy. Journal of Inherited Metabolic Disease, 2021, 44, 1382-1392.	3.6	7
36	Advances in the treatment of neuronal ceroid lipofuscinosis. Expert Opinion on Orphan Drugs, 2013, 1, 951-975.	0.8	6

#	Article	IF	CITATIONS
37	Automated Retinal Layer Segmentation in <i>CLN2</i> -Associated Disease: Commercially Available Software Characterizing a Progressive Maculopathy. Translational Vision Science and Technology, 2021, 10, 23.	2.2	2