Pascale Bauda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/34575/publications.pdf

Version: 2024-02-01

25 papers 1,490 citations

394421 19 h-index 24 g-index

25 all docs

25 docs citations

25 times ranked

2352 citing authors

#	Article	IF	Citations
1	Simple or complex organic substrates inhibit arsenite oxidation and aio Agene expression in two \hat{l}^2 -Proteobacteria strains. Research in Microbiology, 2020, 171, 13-20.	2.1	8
2	Pleiotropic effects of rfa-gene mutations on Escherichia coli envelope properties. Scientific Reports, 2019, 9, 9696.	3.3	54
3	Toxicity mechanisms of ZnO UV-filters used in sunscreens toward the model cyanobacteria Synechococcus elongatus PCC 7942. Environmental Science and Pollution Research, 2019, 26, 22450-22463.	5.3	5
4	The Bacterial and Fungal Diversity of an Aged PAH- and Heavy Metal-Contaminated Soil is Affected by Plant Cover and Edaphic Parameters. Microbial Ecology, 2016, 71, 711-724.	2.8	109
5	Impact of manufactured TiO2 nanoparticles on planktonic and sessile bacterial communities. Environmental Pollution, 2015, 202, 196-204.	7.5	33
6	Ecotoxicological assessment of organic wastes spread on land: Towards a proposal of a suitable test battery. Ecotoxicology and Environmental Safety, 2015, 113, 103-111.	6.0	23
7	The use of soil mites in ecotoxicology: a review. Ecotoxicology, 2015, 24, 1-18.	2.4	27
8	Insight into the primary mode of action of TiO $<$ sub $>$ 2 $<$ /sub $>$ nanoparticles on $<$ i> Escherichia coli $<$ /i> in the dark. Proteomics, 2015, 15, 98-113.	2.2	104
9	Revised Procedure of the Bacterial Reverse Mutation Test for Genotoxic Evaluation of Nanoparticles. Methods in Pharmacology and Toxicology, 2014, , 43-58.	0.2	1
10	Improvement of the <i>Caenorhabditis elegans</i> growth and reproduction test to assess the ecotoxicity of soils and complex matrices. Environmental Toxicology and Chemistry, 2013, 32, 2100-2108.	4.3	17
11	Changes in soil bacterial communities following liming of acidified forests. Applied Soil Ecology, 2012, 59, 116-123.	4.3	24
12	Modifications of the bacterial reverse mutation test reveals mutagenicity of TiO2 nanoparticles and byproducts from a sunscreen TiO2-based nanocomposite. Toxicology Letters, 2012, 215, 54-61.	0.8	32
13	Role of electrostatic interactions in the toxicity of titanium dioxide nanoparticles toward Escherichia coli. Colloids and Surfaces B: Biointerfaces, 2012, 92, 315-321.	5.0	91
14	Taxonomic and functional prokaryote diversity in mildly arsenic-contaminated sediments. Research in Microbiology, 2011, 162, 877-887.	2.1	51
15	Unsuspected Diversity of Arsenite-Oxidizing Bacteria as Revealed by Widespread Distribution of the <i>aoxB</i> Gene in Prokaryotes. Applied and Environmental Microbiology, 2011, 77, 4685-4692.	3.1	84
16	Characterization of the <i>ars</i> Gene Cluster from Extremely Arsenic-Resistant <i>Microbacterium</i> sp. Strain A33. Applied and Environmental Microbiology, 2010, 76, 948-955.	3.1	73
17	Inhibition of Transcription in <i>Staphylococcus aureus</i> by a Primary Sigma Factor-Binding Polypeptide from Phage G1. Journal of Bacteriology, 2009, 191, 3763-3771.	2.2	21
18	Diversity of arsenite transporter genes from arsenic-resistant soil bacteria. Research in Microbiology, 2007, 158, 128-137.	2.1	240

#	Article	IF	CITATIONS
19	Competition of bacteriophage polypeptides with native replicase proteins for binding to the DNA sliding clamp reveals a novel mechanism for DNA replication arrest in Staphylococcus aureus. Molecular Microbiology, 2006, 62, 1132-1143.	2.5	28
20	Competition of bacteriophage polypeptides with native replicase proteins for binding to the DNA sliding clamp reveals a novel mechanism for DNA replication arrest in Staphylococcus aureus. Molecular Microbiology, 2006, 62, 1764-1764.	2.5	0
21	Antimicrobial drug discovery through bacteriophage genomics. Nature Biotechnology, 2004, 22, 185-191.	17.5	210
22	Identification of Tn10insertions in thedsbAgene affectingEscherichia colibiofilm formation. FEMS Microbiology Letters, 1999, 173, 403-409.	1.8	31
23	Identification of Tn 10 insertions in the rfaG , rfaP , and galU genes involved in lipopolysaccharide core biosynthesis that affect Escherichia coli adhesion. Archives of Microbiology, 1999, 172, 1-8.	2.2	131
24	A rapid screening procedure to identify mini-Tn10 insertion mutants of Escherichia coliK-12 with altered adhesion properties. FEMS Microbiology Letters, 1996, 142, 27-30.	1.8	89
25	A rapid screening procedure to identify mini-Tn10 insertion mutants of Escherichia coli K-12 with altered adhesion properties. FEMS Microbiology Letters, 1996, 142, 27-30.	1.8	4