Kaixu Li

List of Publications by Citations

Source: https://exaly.com/author-pdf/3457438/kaixu-li-publications-by-citations.pdf

Version: 2024-04-11

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

69
papers9,202
citations33
h-index70
g-index70
ext. papers11,153
ext. citations8.4
avg, IF6.4
L-index

#	Paper	IF	Citations
69	Characteristics of hemicellulose, cellulose and lignin pyrolysis. <i>Fuel</i> , 2007 , 86, 1781-1788	7.1	4492
68	Lignocellulosic biomass pyrolysis mechanism: A state-of-the-art review. <i>Progress in Energy and Combustion Science</i> , 2017 , 62, 33-86	33.6	1182
67	In-Depth Investigation of Biomass Pyrolysis Based on Three Major Components: Hemicellulose, Cellulose and Lignin. <i>Energy & Double to the Same of Base and Lignin. Energy & Double to the Same of Base and Lignin. Energy & Double to the Same of Same and Lignin. Energy & Double to the Same of Same and Lignin. Energy & Double to the Same of Same and Lignin. Energy & Double to the Same of Same and Lignin. Energy & Double to the Same of Same</i>	4.1	768
66	Biomass-based pyrolytic polygeneration system on cotton stalk pyrolysis: influence of temperature. <i>Bioresource Technology</i> , 2012 , 107, 411-8	11	279
65	Thermogravimetric AnalysisBourier Transform Infrared Analysis of Palm Oil Waste Pyrolysis. <i>Energy & Energy & E</i>	4.1	221
64	Transformation of Nitrogen and Evolution of N-Containing Species during Algae Pyrolysis. <i>Environmental Science & Environmental Science & Environmenta</i>	10.3	149
63	Mechanism of Palm Oil Waste Pyrolysis in a Packed Bed. Energy & En	4.1	133
62	The structure evolution of biochar from biomass pyrolysis and its correlation with gas pollutant adsorption performance. <i>Bioresource Technology</i> , 2017 , 246, 101-109	11	122
61	Co-pyrolysis of lignocellulosic biomass and microalgae: Products characteristics and interaction effect. <i>Bioresource Technology</i> , 2017 , 245, 860-868	11	86
60	Thermal behavior and reaction kinetics analysis of pyrolysis and subsequent in-situ gasification of torrefied biomass pellets. <i>Energy Conversion and Management</i> , 2018 , 161, 205-214	10.6	78
59	Investigation on biomass nitrogen-enriched pyrolysis: Influence of temperature. <i>Bioresource Technology</i> , 2018 , 249, 247-253	11	77
58	Biomass pyrolysis for nitrogen-containing liquid chemicals and nitrogen-doped carbon materials. Journal of Analytical and Applied Pyrolysis, 2016 , 120, 186-193	6	77
57	Biomass-Based Pyrolytic Polygeneration System for Bamboo Industry Waste: Evolution of the Char Structure and the Pyrolysis Mechanism. <i>Energy & Energy & Ene</i>	4.1	75
56	The densification of bio-char: Effect of pyrolysis temperature on the qualities of pellets. <i>Bioresource Technology</i> , 2016 , 200, 521-7	11	73
55	Influence of physicochemical properties of metal modified ZSM-5 catalyst on benzene, toluene and xylene production from biomass catalytic pyrolysis. <i>Bioresource Technology</i> , 2019 , 278, 248-254	11	71
54	Co-pyrolysis of microalgae and plastic: Characteristics and interaction effects. <i>Bioresource Technology</i> , 2019 , 274, 145-152	11	66
53	Co-gasification of coal and biomass: Synergy, characterization and reactivity of the residual char. <i>Bioresource Technology</i> , 2017 , 244, 1-7	11	62

(2020-2019)

52	Mechanism of biomass activation and ammonia modification for nitrogen-doped porous carbon materials. <i>Bioresource Technology</i> , 2019 , 280, 260-268	11	58
51	Bamboo wastes catalytic pyrolysis with N-doped biochar catalyst for phenols products. <i>Applied Energy</i> , 2020 , 260, 114242	10.7	58
50	Influence of Biochar Addition on Nitrogen Transformation during Copyrolysis of Algae and Lignocellulosic Biomass. <i>Environmental Science & Environmental Science & Environment</i>	10.3	54
49	Insight into KOH activation mechanism during biomass pyrolysis: Chemical reactions between O-containing groups and KOH. <i>Applied Energy</i> , 2020 , 278, 115730	10.7	54
48	Application of biomass pyrolytic polygeneration technology using retort reactors. <i>Bioresource Technology</i> , 2016 , 200, 64-71	11	53
47	The effects of contact time and coking on the catalytic fast pyrolysis of cellulose. <i>Green Chemistry</i> , 2017 , 19, 286-297	10	50
46	Effect of deashing on activation process and lead adsorption capacities of sludge-based biochar. <i>Science of the Total Environment</i> , 2020 , 716, 137016	10.2	50
45	Investigation on co-pyrolysis of lignocellulosic biomass and amino acids using TG-FTIR and Py-GC/MS. <i>Energy Conversion and Management</i> , 2019 , 196, 320-329	10.6	48
44	Synthesis and characterization of magnesium oxide nanoparticle-containing biochar composites for efficient phosphorus removal from aqueous solution. <i>Chemosphere</i> , 2020 , 247, 125847	8.4	44
43	Influence of NH concentration on biomass nitrogen-enriched pyrolysis. <i>Bioresource Technology</i> , 2018 , 263, 350-357	11	44
42	Correlation of Feedstock and Bio-oil Compound Distribution. <i>Energy & Distribution & Energy & Distribution</i> 2017, 31, 7093-7100	4.1	43
41	The conversion of biomass to light olefins on Fe-modified ZSM-5 catalyst: Effect of pyrolysis parameters. <i>Science of the Total Environment</i> , 2018 , 628-629, 350-357	10.2	41
40		10.2	4 ¹ 3 ⁸
	Preparation of mesoporous ZSM-5 catalysts using green templates and their performance in		
40	Preparation of mesoporous ZSM-5 catalysts using green templates and their performance in biomass catalytic pyrolysis. <i>Bioresource Technology</i> , 2019 , 289, 121729 Effects of potassium salts loading on calcium oxide on the hydrogen production from	11	38
40	Preparation of mesoporous ZSM-5 catalysts using green templates and their performance in biomass catalytic pyrolysis. <i>Bioresource Technology</i> , 2019 , 289, 121729 Effects of potassium salts loading on calcium oxide on the hydrogen production from pyrolysis-gasification of biomass. <i>Bioresource Technology</i> , 2018 , 249, 744-750 Effect of Carboxymethyl Cellulose Binder on the Quality of Biomass Pellets. <i>Energy & Description</i>	11	38
40 39 38	Preparation of mesoporous ZSM-5 catalysts using green templates and their performance in biomass catalytic pyrolysis. <i>Bioresource Technology</i> , 2019 , 289, 121729 Effects of potassium salts loading on calcium oxide on the hydrogen production from pyrolysis-gasification of biomass. <i>Bioresource Technology</i> , 2018 , 249, 744-750 Effect of Carboxymethyl Cellulose Binder on the Quality of Biomass Pellets. <i>Energy & Description</i> , 2016, 30, 5799-5808 Enhancing the production of light olefins and aromatics from catalytic fast pyrolysis of cellulose in	11 11 4.1	38 37 34

34	Co-pyrolysis of microalgae with low-density polyethylene (LDPE) for deoxygenation and denitrification. <i>Bioresource Technology</i> , 2020 , 311, 123502	11	25
33	Preparation of Iron- and Nitrogen-Codoped Carbon Nanotubes from Waste Plastics Pyrolysis for the Oxygen Reduction Reaction. <i>ChemSusChem</i> , 2020 , 13, 938-944	8.3	25
32	Catalytic Upgrading of Fast Pyrolysis Products with Fe-, Zr-, and Co-Modified Zeolites Based on Pyrolyzer CC/MS Analysis. <i>Energy & amp; Fuels</i> , 2017 , 31, 3979-3986	4.1	23
31	Study on intrinsic reaction behavior and kinetics during reduction of iron ore pellets by utilization of biochar. <i>Energy Conversion and Management</i> , 2018 , 158, 1-8	10.6	23
30	Role of porous structure and active O-containing groups of activated biochar catalyst during biomass catalytic pyrolysis. <i>Energy</i> , 2020 , 210, 118646	7.9	23
29	Pyrolysis of Chinese chestnut shells: Effects of temperature and Fe presence on product composition. <i>Bioresource Technology</i> , 2019 , 287, 121444	11	22
28	Experimental and modeling study of potassium catalyzed gasification of woody char pellet with CO2. <i>Energy</i> , 2019 , 171, 678-688	7.9	21
27	Lignin Characterization and Catalytic Pyrolysis for Phenol-Rich Oil with TiO2-Based Catalysts. <i>Energy & Disperse Fuels</i> , 2019 , 33, 9934-9941	4.1	16
26	Nano nickel embedded in N-doped CNTs-supported porous biochar for adsorption-reduction of hexavalent chromium. <i>Journal of Hazardous Materials</i> , 2021 , 416, 125693	12.8	16
25	Cellulose Pyrolysis Mechanism Based on Functional Group Evolutions by Two-Dimensional Perturbation Correlation Infrared Spectroscopy. <i>Energy & Description</i> 2020, 34, 3412-3421	4.1	15
24	Effects of biomass pyrolysis derived wood vinegar on microbial activity and communities of activated sludge. <i>Bioresource Technology</i> , 2019 , 279, 252-261	11	14
23	Effect of Torrefaction on Properties of Pellets Produced from Woody Biomass. <i>Energy & amp; Fuels</i> , 2020 , 34, 15343-15354	4.1	14
22	Effects of biomass pyrolysis derived wood vinegar (WVG) on extracellular polymeric substances and performances of activated sludge. <i>Bioresource Technology</i> , 2019 , 274, 25-32	11	14
21	Influence of Biochar on the Steam Reforming of Biomass Volatiles: Effects of Activation Temperature and Atmosphere. <i>Energy & Fuels</i> , 2019 , 33, 2328-2334	4.1	13
20	Inert chemical looping conversion of biochar with iron ore as oxygen carrier: Products conversion kinetics and structural evolution. <i>Bioresource Technology</i> , 2019 , 275, 53-60	11	13
19	Life Cycle Assessment and Economic Analysis of Biomass Energy Technology in China: A Brief Review. <i>Processes</i> , 2020 , 8, 1112	2.9	12
18	Organic salt-assisted pyrolysis for preparation of porous carbon from cellulose, hemicellulose and lignin: New insight from structure evolution. <i>Fuel</i> , 2021 , 291, 120185	7.1	12
17	Temperature-dependent magnesium citrate modified formation of MgO nanoparticles biochar composites with efficient phosphate removal. <i>Chemosphere</i> , 2021 , 274, 129904	8.4	11

LIST OF PUBLICATIONS

16	Synergetic effect of magnesium citrate and temperature on the product characteristics of waste lotus seedpod pyrolysis. <i>Bioresource Technology</i> , 2020 , 305, 123079	11	10
15	Production of furfural and levoglucosan from typical agricultural wastes via pyrolysis coupled with hydrothermal conversion: Influence of temperature and raw materials. <i>Waste Management</i> , 2020 , 114, 43-52	8.6	10
14	Catalytic pyrolysis of hemicellulose for the production of light olefins and aromatics over Fe modified ZSM-5 catalysts. <i>Cellulose</i> , 2019 , 26, 8489-8500	5.5	8
13	One-pot hydrothermal synthesis of dual metal incorporated CuCe-SAPO-34 zeolite for enhancing ammonia selective catalytic reduction. <i>Journal of Hazardous Materials</i> , 2021 , 405, 124177	12.8	8
12	Reduction of fine particulate matter emissions from cornstalk combustion by calcium phosphates additives. <i>Fuel</i> , 2021 , 283, 119303	7.1	7
11	Lignin pyrolysis under NH3 atmosphere for 4-vinylphenol product: An experimental and theoretical study. <i>Fuel</i> , 2021 , 297, 120776	7.1	7
10	Enhancing the Production of Light Olefins from Wheat Straw with Modified HZSM-5 Catalytic Pyrolysis. <i>Energy & Dolorowski</i> , Fuels, 2019 , 33, 11263-11273	4.1	6
9	Application of Carbon Nanotubes from Waste Plastics As Filler to Epoxy Resin Composite <i>ACS Sustainable Chemistry and Engineering</i> , 2022 , 10, 2204-2213	8.3	5
8	Effects of acid and metal salt additives on product characteristics of biomass microwave pyrolysis. Journal of Renewable and Sustainable Energy, 2016 , 8, 063103	2.5	5
7	High-value products from ex-situ catalytic pyrolysis of polypropylene waste using iron-based catalysts: the influence of support materials. <i>Waste Management</i> , 2021 , 136, 47-56	8.6	4
6	The critical role of anions in the porous biochar structure and potassium release during the potassium-assisted pyrolysis process. <i>Green Chemistry</i> ,	10	3
5	Effects of the physicochemical properties of biochar and soil on moisture sorption. <i>Journal of Renewable and Sustainable Energy</i> , 2016 , 8, 064702	2.5	2
4	Study on the physicochemical structure and gasification reactivity of chars from pyrolysis of biomass pellets under different heating rates. <i>Fuel</i> , 2022 , 314, 122789	7.1	1
3	Pyrolysis Chemistry and Mechanisms: Interactions of Primary Components. <i>Biofuels and Biorefineries</i> , 2020 , 113-137	0.3	1
2	Dynamic modeling with experimental calibration for the syngas production from biomass fixed-bed gasification. <i>AICHE Journal</i> , 2021 , 67, e17366	3.6	1
1	Pyrolysis of boron-crosslinked lignin: influence on lignin softening and product properties Bioresource Technology, 2022 , 127218	11	1