Clive W Ronson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3457382/publications.pdf Version: 2024-02-01

CLIVE W RONSON

#	Article	IF	CITATIONS
1	An epigenetic switch activates bacterial quorum sensing and horizontal transfer of an integrative and conjugative element. Nucleic Acids Research, 2022, 50, 975-988.	14.5	17
2	Identification and classification of antiviral defence systems in bacteria and archaea with PADLOC reveals new system types. Nucleic Acids Research, 2021, 49, 10868-10878.	14.5	92
3	Complete Genome Sequences of <i>Trifolium</i> spp. Inoculant Strains <i>Rhizobium leguminosarum</i> sv. <i>trifolii</i> TA1 and CC275e: Resources for Genomic Study of the <i>Rhizobium</i> - <i>Trifolium</i> Symbiosis. Molecular Plant-Microbe Interactions, 2021, 34, 131-134.	2.6	4
4	Comparative analysis of integrative and conjugative mobile genetic elements in the genus Mesorhizobium. Microbial Genomics, 2021, 7, .	2.0	13
5	Kinetic proofreading of lipochitooligosaccharides determines signal activation of symbiotic plant receptors. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	23
6	Structural signatures in EPR3 define a unique class of plant carbohydrate receptors. Nature Communications, 2020, 11, 3797.	12.8	31
7	Ligand-recognizing motifs in plant LysM receptors are major determinants of specificity. Science, 2020, 369, 663-670.	12.6	87
8	Rhizobium leguminosarum bv. trifolii NodD2 Enhances Competitive Nodule Colonization in the Clover-Rhizobium Symbiosis. Applied and Environmental Microbiology, 2020, 86, .	3.1	14
9	Symbiosis islands of Loteae-nodulating Mesorhizobium comprise three radiating lineages with concordant nod gene complements and nodulation host-range groupings. Microbial Genomics, 2020, 6, .	2.0	7
10	Delineation of the integrase-attachment and origin-of-transfer regions of the symbiosis island ICEMISymR7A. Plasmid, 2019, 104, 102416.	1.4	4
11	Regulation of Nod factor biosynthesis by alternative NodD proteins at distinct stages of symbiosis provides additional compatibility scrutiny. Environmental Microbiology, 2018, 20, 97-110.	3.8	50
12	Pectobacterium atrosepticum and Pectobacterium carotovorum Harbor Distinct, Independently Acquired Integrative and Conjugative Elements Encoding Coronafacic Acid that Enhance Virulence on Potato Stems. Frontiers in Microbiology, 2016, 7, 397.	3.5	22
13	Structures of Exopolysaccharides Involved in Receptor-mediated Perception of Mesorhizobium loti by Lotus japonicus. Journal of Biological Chemistry, 2016, 291, 20946-20961.	3.4	32
14	Assembly and transfer of tripartite integrative and conjugative genetic elements. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12268-12273.	7.1	64
15	Genome sequence of the clover symbiont Rhizobium leguminosarum bv. trifolii strain CC275e. Standards in Genomic Sciences, 2015, 10, 121.	1.5	9
16	Mobilization of horizontally acquired island 2 is induced <i>in planta</i> in the phytopathogen <scp><i>P</i></scp> <i>ectobacterium atrosepticum</i> â€ <scp>SCRI</scp> 1043 and involves the putative relaxase <scp>ECA</scp> 0613 and quorum sensing. Environmental Microbiology, 2015, 17, 4730-4744.	3.8	14
17	Silencing quorum sensing and ICE mobility through antiactivation and ribosomal frameshifting. Mobile Genetic Elements, 2015, 5, 103-108.	1.8	8
18	Ribosomal frameshifting and dual-target antiactivation restrict quorum-sensing–activated transfer of a mobile genetic element. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4104-4109.	7.1	68

CLIVE W RONSON

#	Article	IF	CITATIONS
19	High-Quality draft genome sequence of the Lotus spp. microsymbiont Mesorhizobium loti strain CJ3Sym. Standards in Genomic Sciences, 2015, 10, 54.	1.5	2
20	Proteome reference maps of the <i>Lotus japonicus</i> nodule and root. Proteomics, 2014, 14, 230-240.	2.2	21
21	Lipochitin Oligosaccharides Immobilized through Oximes in Glycan Microarrays Bind LysM Proteins. ChemBioChem, 2014, 15, 425-434.	2.6	10
22	Genome sequence of the Lotus corniculatus microsymbiont Mesorhizobium loti strain R88B. Standards in Genomic Sciences, 2014, 9, 3.	1.5	12
23	Genome sequence of the Lotus spp. microsymbiont Mesorhizobium loti strain NZP2037. Standards in Genomic Sciences, 2014, 9, 7.	1.5	5
24	Genome sequence of the Lotus spp. microsymbiont Mesorhizobium loti strain R7A. Standards in Genomic Sciences, 2014, 9, 6.	1.5	22
25	Genome Sequence and Gene Functions in Mesorhizobium loti and Relatives. Compendium of Plant Genomes, 2014, , 41-57.	0.5	4
26	Conditional Requirement for Exopolysaccharide in the <i>Mesorhizobium–Lotus</i> Symbiosis. Molecular Plant-Microbe Interactions, 2013, 26, 319-329.	2.6	117
27	A widely conserved molecular switch controls quorum sensing and symbiosis island transfer in <i><scp>M</scp>esorhizobium loti</i> through expression of a novel antiactivator. Molecular Microbiology, 2013, 87, 1-13.	2.5	50
28	The NifA-RpoN Regulon of Mesorhizobium loti Strain R7A and Its Symbiotic Activation by a Novel Lacl/GalR-Family Regulator. PLoS ONE, 2013, 8, e53762.	2.5	38
29	Legume receptors perceive the rhizobial lipochitin oligosaccharide signal molecules by direct binding. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 13859-13864.	7.1	301
30	Inactivation of <i>Pb</i> Topo IIIβ causes hyperâ€excision of the Pathogenicity Island HAI2 resulting in reduced virulence of <i>Pectobacterium atrosepticum</i> . Molecular Microbiology, 2012, 84, 648-663.	2.5	11
31	Heavy metal tolerant Metalliresistens boonkerdii gen. nov., sp. nov., a new genus in the family Bradyrhizobiaceae isolated from soil in Thailand. Systematic and Applied Microbiology, 2010, 33, 374-382.	2.8	14
32	The molecular network governing nodule organogenesis and infection in the model legume Lotus japonicus. Nature Communications, 2010, 1, 10.	12.8	426
33	A LuxRlâ€family regulatory system controls excision and transfer of the <i>Mesorhizobium loti</i> strain R7A symbiosis island by activating expression of two conserved hypothetical genes. Molecular Microbiology, 2009, 73, 1141-1155.	2.5	57
34	Nodulation Gene Mutants of <i>Mesorhizobium loti</i> R7A— <i>nodZ</i> and <i>nolL</i> Mutants Have Host-Specific Phenotypes on <i>Lotus</i> spp Molecular Plant-Microbe Interactions, 2009, 22, 1546-1554.	2.6	62
35	Absence of Symbiotic Leghemoglobins Alters Bacteroid and Plant Cell Differentiation During Development of <i>Lotus japonicus</i> Root Nodules. Molecular Plant-Microbe Interactions, 2009, 22, 800-808.	2.6	55
36	Host-specific regulation of symbiotic nitrogen fixation in Rhizobium leguminosarum biovar trifolii. Microbiology (United Kingdom), 2007, 153, 3184-3195.	1.8	32

CLIVE W RONSON

#	Article	IF	CITATIONS
37	Trehalose Biosynthesis in Rhizobium leguminosarum bv. trifolii and Its Role in Desiccation Tolerance. Applied and Environmental Microbiology, 2007, 73, 3984-3992.	3.1	89
38	Symbiosis-Induced Cascade Regulation of the Mesorhizobium loti R7A VirB/D4 Type IV Secretion System. Molecular Plant-Microbe Interactions, 2007, 20, 255-261.	2.6	55
39	Ferrichrome utilization in a mesorhizobial population: microevolution of a threeâ€locus system. Environmental Microbiology, 2007, 9, 2923-2932.	3.8	8
40	Excision and transfer of the <i>Mesorhizobium loti</i> R7A symbiosis island requires an integrase IntS, a novel recombination directionality factor RdfS, and a putative relaxase RlxS. Molecular Microbiology, 2006, 62, 723-734.	2.5	119
41	Occurrence of sep Insecticidal Toxin Complex Genes in Serratia spp. and Yersinia frederiksenii. Applied and Environmental Microbiology, 2006, 72, 6584-6592.	3.1	34
42	Symbiotic phenotypes and translocated effector proteins of the Mesorhizobium loti strain R7A VirB/D4 type IV secretion system. Molecular Microbiology, 2004, 54, 561-574.	2.5	174
43	Comparative Sequence Analysis of the Symbiosis Island of Mesorhizobium loti Strain R7A. Journal of Bacteriology, 2002, 184, 3086-3095.	2.2	305
44	The bio operon on the acquired symbiosis island of Mesorhizobium sp. strain R7A includes a novel gene involved in pimeloyl-CoA synthesis The GenBank accession number for the sequence reported in this paper is AF311738 Microbiology (United Kingdom), 2001, 147, 1315-1322.	1.8	54
45	Plasmid-Located Pathogenicity Determinants of Serratia entomophila, the Causal Agent of Amber Disease of Grass Grub, Show Similarity to the Insecticidal Toxins of Photorhabdus luminescens. Journal of Bacteriology, 2000, 182, 5127-5138.	2.2	150
46	Cloning and Overexpression of Glycosyltransferases That Generate the Lipopolysaccharide Core of Rhizobium leguminosarum. Journal of Biological Chemistry, 1998, 273, 26432-26440.	3.4	40
47	Evolution of rhizobia by acquisition of a 500-kb symbiosis island that integrates into a phe-tRNA gene. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 5145-5149.	7.1	551
48	Nodulating strains of Rhizobium loti arise through chromosomal symbiotic gene transfer in the environment Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 8985-8989.	7.1	405
49	Deduced products of C4-dicarboxylate transport regulatory genes ofRhizobiumleguminosarum are homologous to nitrogen regulatory gene products. Nucleic Acids Research, 1987, 15, 7921-7934.	14.5	209
50	Conserved domains in bacterial regulatory proteins that respond to environmental stimuli. Cell, 1987, 49, 579-581.	28.9	497
51	Plant-Bacterial Signalling in the Rhizobium-Legume Symbiosis. , 1987, , 531-539.		0
52	Genes Involved in the Carbon Metabolism of Bacteroids. Current Plant Science and Biotechnology in Agriculture, 1985, , 201-207.	0.0	42
53	Organisation of nodulation and nitrogen fixation genes on a Rhizobium trifolii symbiotic plasmid. Archives of Microbiology, 1984, 139-139, 151-157.	2.2	22
54	Increasing biological nitrogen fixation by white clover-rhizobia symbiosis. Journal of New Zealand Grasslands, 0, , 231-234.	0.0	5