
## **Christopher S Hayes**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3456745/publications.pdf

Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                 | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Rhs proteins from diverse bacteria mediate intercellular competition. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 7032-7037.                                            | 7.1  | 381       |
| 2  | A widespread family of polymorphic contact-dependent toxin delivery systems in bacteria. Nature, 2010,<br>468, 439-442.                                                                                                 | 27.8 | 292       |
| 3  | Bacterial Contact-Dependent Delivery Systems. Annual Review of Genetics, 2010, 44, 71-90.                                                                                                                               | 7.6  | 238       |
| 4  | The Role of Secretion Systems and Small Molecules in Soft-Rot <i>Enterobacteriaceae</i> Pathogenicity. Annual Review of Phytopathology, 2012, 50, 425-449.                                                              | 7.8  | 217       |
| 5  | Cleavage of the A Site mRNA Codon during Ribosome Pausing Provides a Mechanism for Translational<br>Quality Control. Molecular Cell, 2003, 12, 903-911.                                                                 | 9.7  | 203       |
| 6  | Genetically distinct pathways guide effector export through the type <scp>VI</scp> secretion system.<br>Molecular Microbiology, 2014, 92, 529-542.                                                                      | 2.5  | 192       |
| 7  | Identification of Functional Toxin/Immunity Genes Linked to Contact-Dependent Growth Inhibition<br>(CDI) and Rearrangement Hotspot (Rhs) Systems. PLoS Genetics, 2011, 7, e1002217.                                     | 3.5  | 175       |
| 8  | Bacterial contact-dependent growth inhibition. Trends in Microbiology, 2013, 21, 230-237.                                                                                                                               | 7.7  | 150       |
| 9  | Proline Residues at the C Terminus of Nascent Chains Induce SsrA Tagging during Translation Termination. Journal of Biological Chemistry, 2002, 277, 33825-33832.                                                       | 3.4  | 139       |
| 10 | The tmRNA ribosome-rescue system. Advances in Protein Chemistry and Structural Biology, 2012, 86, 151-191.                                                                                                              | 2.3  | 138       |
| 11 | Contact-dependent growth inhibition toxins exploit multiple independent cell-entry pathways.<br>Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11341-11346.                | 7.1  | 108       |
| 12 | Stop codons preceded by rare arginine codons are efficient determinants of SsrA tagging<br>inEscherichia coli. Proceedings of the National Academy of Sciences of the United States of America,<br>2002, 99, 3440-3445. | 7.1  | 105       |
| 13 | Contact-Dependent Growth Inhibition (CDI) and CdiB/CdiA Two-Partner Secretion Proteins. Journal of<br>Molecular Biology, 2015, 427, 3754-3765.                                                                          | 4.2  | 101       |
| 14 | Prolyl-tRNAPro in the A-site of SecM-arrested Ribosomes Inhibits the Recruitment of<br>Transfer-messenger RNA. Journal of Biological Chemistry, 2006, 281, 34258-34268.                                                 | 3.4  | 89        |
| 15 | Mechanisms and Biological Roles of Contact-Dependent Growth Inhibition Systems. Cold Spring<br>Harbor Perspectives in Medicine, 2014, 4, a010025-a010025.                                                               | 6.2  | 89        |
| 16 | Structural basis of toxicity and immunity in contact-dependent growth inhibition (CDI) systems.<br>Proceedings of the National Academy of Sciences of the United States of America, 2012, 109,<br>21480-21485.          | 7.1  | 86        |
| 17 | The toxin/immunity network of <i>Burkholderia pseudomallei</i> contactâ€dependent growth<br>inhibition (CDI) systems. Molecular Microbiology, 2012, 84, 516-529.                                                        | 2.5  | 86        |
| 18 | Identification of a target cell permissive factor required for contact-dependent growth inhibition<br>(CDI). Genes and Development, 2012, 26, 515-525.                                                                  | 5.9  | 85        |

CHRISTOPHER S HAYES

| #  | Article                                                                                                                                                                           | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Receptor Polymorphism Restricts Contact-Dependent Growth Inhibition to Members of the Same<br>Species. MBio, 2013, 4, .                                                           | 4.1  | 85        |
| 20 | tmRNA regulates synthesis of the ArfA ribosome rescue factor. Molecular Microbiology, 2011, 80, 1204-1219.                                                                        | 2.5  | 83        |
| 21 | Programmed Secretion Arrest and Receptor-Triggered Toxin Export during Antibacterial Contact-Dependent Growth Inhibition. Cell, 2018, 175, 921-933.e14.                           | 28.9 | 71        |
| 22 | Beyond ribosome rescue: tmRNA and $co\hat{\epsilon}$ ranslational processes. FEBS Letters, 2010, 584, 413-419.                                                                    | 2.8  | 70        |
| 23 | A novel family of toxin/antitoxin proteins in <i>Bacillus</i> species. FEBS Letters, 2012, 586, 132-136.                                                                          | 2.8  | 70        |
| 24 | Infectious polymorphic toxins delivered by outer membrane exchange discriminate kin in myxobacteria.<br>ELife, 2017, 6, .                                                         | 6.0  | 70        |
| 25 | Polymorphic Toxins and Their Immunity Proteins: Diversity, Evolution, and Mechanisms of Delivery.<br>Annual Review of Microbiology, 2020, 74, 497-520.                            | 7.3  | 68        |
| 26 | Delivery of CdiA Nuclease Toxins into Target Cells during Contact-Dependent Growth Inhibition. PLoS<br>ONE, 2013, 8, e57609.                                                      | 2.5  | 62        |
| 27 | Signals of growth regulation in bacteria. Current Opinion in Microbiology, 2009, 12, 667-673.                                                                                     | 5.1  | 60        |
| 28 | CdiA from Enterobacter cloacae Delivers a Toxic Ribosomal RNase into Target Bacteria. Structure,<br>2014, 22, 707-718.                                                            | 3.3  | 60        |
| 29 | Selection of Orphan Rhs Toxin Expression in Evolved Salmonella enterica Serovar Typhimurium. PLoS<br>Genetics, 2014, 10, e1004255.                                                | 3.5  | 56        |
| 30 | <scp>CdiA</scp> promotes receptorâ€independent intercellular adhesion. Molecular Microbiology,<br>2015, 98, 175-192.                                                              | 2.5  | 56        |
| 31 | Toxin-Antitoxin Pairs in Bacteria. Cell, 2003, 112, 2-4.                                                                                                                          | 28.9 | 51        |
| 32 | Recombineering Reveals a Diverse Collection of Ribosomal Proteins L4 and L22 that Confer Resistance to Macrolide Antibiotics. Journal of Molecular Biology, 2009, 386, 300-315.   | 4.2  | 51        |
| 33 | Mechanistic Model of Rothia mucilaginosa Adaptation toward Persistence in the CF Lung, Based on a<br>Genome Reconstructed from Metagenomic Data. PLoS ONE, 2013, 8, e64285.       | 2.5  | 51        |
| 34 | Amino Acid Starvation and Colicin D Treatment Induce A-site mRNA Cleavage in Escherichia coli.<br>Journal of Molecular Biology, 2008, 378, 505-519.                               | 4.2  | 50        |
| 35 | Translation factor LepA contributes to tellurite resistance in Escherichia coli but plays no apparent<br>role in the fidelity of protein synthesis. Biochimie, 2010, 92, 157-163. | 2.6  | 49        |
| 36 | CdiA Effectors Use Modular Receptor-Binding Domains To Recognize Target Bacteria. MBio, 2017, 8, .                                                                                | 4.1  | 46        |

CHRISTOPHER S HAYES

| #  | Article                                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Toxin on a stick. Virulence, 2011, 2, 356-359.                                                                                                                                                                                    | 4.4  | 44        |
| 38 | Structure of the DNA-SspC Complex: Implications for DNA Packaging, Protection, and Repair in Bacterial Spores. Journal of Bacteriology, 2004, 186, 3525-3530.                                                                     | 2.2  | 43        |
| 39 | Proteobacterial ArfA Peptides Are Synthesized from Non-stop Messenger RNAs. Journal of Biological Chemistry, 2012, 287, 29765-29775.                                                                                              | 3.4  | 41        |
| 40 | CdiA Effectors from Uropathogenic Escherichia coli Use Heterotrimeric Osmoporins as Receptors to Recognize Target Bacteria. PLoS Pathogens, 2016, 12, e1005925.                                                                   | 4.7  | 41        |
| 41 | Analysis of Aminoacyl- and Peptidyl-tRNAs by Gel Electrophoresis. , 2012, 905, 291-309.                                                                                                                                           |      | 40        |
| 42 | In Vitro and In Vivo Oxidation of Methionine Residues in Small, Acid-Soluble Spore Proteins from<br><i>Bacillus</i> Species. Journal of Bacteriology, 1998, 180, 2694-2700.                                                       | 2.2  | 40        |
| 43 | RNase II is important for Aâ€site mRNA cleavage during ribosome pausing. Molecular Microbiology, 2009, 73, 882-897.                                                                                                               | 2.5  | 39        |
| 44 | Unraveling the essential role of CysK in CDI toxin activation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9792-9797.                                                             | 7.1  | 37        |
| 45 | Moonlighting O-acetylserine sulfhydrylase: New functions for an old protein. Biochimica Et<br>Biophysica Acta - Proteins and Proteomics, 2015, 1854, 1184-1193.                                                                   | 2.3  | 35        |
| 46 | Activation of contact-dependent antibacterial tRNase toxins by translation elongation factors.<br>Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E1951-E1957.                        | 7.1  | 33        |
| 47 | Kinetics of Paused Ribosome Recycling in Escherichia coli. Journal of Molecular Biology, 2009, 394, 251-267.                                                                                                                      | 4.2  | 32        |
| 48 | The Î <sup>2</sup> -encapsulation cage of rearrangement hotspot (Rhs) effectors is required for type VI secretion.<br>Proceedings of the National Academy of Sciences of the United States of America, 2020, 117,<br>33540-33548. | 7.1  | 32        |
| 49 | The protonâ€motive force is required for translocation of <scp>CDI</scp> toxins across the inner membrane of target bacteria. Molecular Microbiology, 2014, 94, 466-481.                                                          | 2.5  | 30        |
| 50 | Diversification of Î <sup>2</sup> -Augmentation Interactions between CDI Toxin/Immunity Proteins. Journal of Molecular Biology, 2015, 427, 3766-3784.                                                                             | 4.2  | 30        |
| 51 | The CDI toxin of Yersinia kristensenii is a novel bacterial member of the RNase A superfamily. Nucleic<br>Acids Research, 2017, 45, 5013-5025.                                                                                    | 14.5 | 30        |
| 52 | Functional Diversity of Cytotoxic tRNase/Immunity Protein Complexes from Burkholderia pseudomallei. Journal of Biological Chemistry, 2016, 291, 19387-19400.                                                                      | 3.4  | 28        |
| 53 | An α/β-Type, Small, Acid-Soluble Spore Protein Which Has Very High Affinity for DNA Prevents Outgrowth<br>of Bacillus subtilis Spores. Journal of Bacteriology, 2001, 183, 2662-2666.                                             | 2.2  | 27        |
| 54 | Target highlights in <scp>CASP14</scp> : Analysis of models by structure providers. Proteins:<br>Structure, Function and Bioinformatics, 2021, 89, 1647-1672.                                                                     | 2.6  | 27        |

CHRISTOPHER S HAYES

| #  | Article                                                                                                                                                                                                                        | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 55 | YoeB toxin is activated during thermal stress. MicrobiologyOpen, 2015, 4, 682-697.                                                                                                                                             | 3.0  | 26        |
| 56 | Ribosomal Protein S12 and Aminoglycoside Antibiotics Modulate A-site mRNA Cleavage and<br>Transfer-Messenger RNA Activity in Escherichia coli. Journal of Biological Chemistry, 2009, 284,<br>32188-32200.                     | 3.4  | 25        |
| 57 | Genetic Analysis of the CDI Pathway from Burkholderia pseudomallei 1026b. PLoS ONE, 2015, 10, e0120265.                                                                                                                        | 2.5  | 25        |
| 58 | Functional plasticity of antibacterial EndoU toxins. Molecular Microbiology, 2018, 109, 509-527.                                                                                                                               | 2.5  | 25        |
| 59 | Structure of a novel antibacterial toxin that exploits elongation factor Tu to cleave specific transfer<br>RNAs. Nucleic Acids Research, 2017, 45, 10306-10320.                                                                | 14.5 | 23        |
| 60 | Convergent Evolution of the Barnase/EndoU/Colicin/RelE (BECR) Fold in Antibacterial tRNase Toxins.<br>Structure, 2019, 27, 1660-1674.e5.                                                                                       | 3.3  | 22        |
| 61 | Equilibrium and Kinetic Binding Interactions between DNA and a Group of Novel, Nonspecific<br>DNA-binding Proteins from Spores ofBacillus and Clostridium Species. Journal of Biological<br>Chemistry, 2000, 275, 35040-35050. | 3.4  | 20        |
| 62 | Alternative Fates of Paused Ribosomes during Translation Termination. Journal of Biological Chemistry, 2011, 286, 31105-31112.                                                                                                 | 3.4  | 20        |
| 63 | CDI Systems Are Stably Maintained by a Cell-Contact Mediated Surveillance Mechanism. PLoS Genetics, 2016, 12, e1006145.                                                                                                        | 3.5  | 20        |
| 64 | N-terminal Amino Acid Residues Mediate Protein-Protein Interactions between DNA-bound α/β-Type Small,<br>Acid-soluble Spore Proteins from Bacillus Species. Journal of Biological Chemistry, 2001, 276,<br>2267-2275.          | 3.4  | 16        |
| 65 | A-Site mRNA Cleavage Is Not Required for tmRNA-Mediated ssrA-Peptide Tagging. PLoS ONE, 2013, 8, e81319.                                                                                                                       | 2.5  | 16        |
| 66 | Modulation of <i>Escherichia coli</i> serine acetyltransferase catalytic activity in the cysteine synthase complex. FEBS Letters, 2017, 591, 1212-1224.                                                                        | 2.8  | 15        |
| 67 | Deletion of the RluD pseudouridine synthase promotes SsrA peptide tagging of ribosomal protein S7.<br>Molecular Microbiology, 2011, 79, 331-341.                                                                               | 2.5  | 14        |
| 68 | The <scp>F</scp> pilus mediates a novel pathway of <scp>CDI</scp> toxin import. Molecular<br>Microbiology, 2014, 93, 276-290.                                                                                                  | 2.5  | 14        |
| 69 | Non-pathogenic Escherichia coli Enhance Stx2a Production of E. coli O157:H7 Through Both<br>bamA-Dependent and Independent Mechanisms. Frontiers in Microbiology, 2018, 9, 1325.                                               | 3.5  | 13        |
| 70 | Target highlights in CASP13: Experimental target structures through the eyes of their authors.<br>Proteins: Structure, Function and Bioinformatics, 2019, 87, 1037-1057.                                                       | 2.6  | 12        |
| 71 | Can't you hear me knocking: contact-dependent competition and cooperation in bacteria. Emerging<br>Topics in Life Sciences, 2017, 1, 75-83.                                                                                    | 2.6  | 11        |
| 72 | Target highlights from the first postâ€PSI CASP experiment (CASP12, May–August 2016). Proteins:<br>Structure, Function and Bioinformatics, 2018, 86, 27-50.                                                                    | 2.6  | 11        |

| #  | Article                                                                                                                                                                                                               | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Identification of Protein-Protein Contacts between α/β-Type Small, Acid-soluble Spore Proteins of<br>Bacillus Species Bound to DNA. Journal of Biological Chemistry, 1998, 273, 17326-17332.                          | 3.4 | 9         |
| 74 | The N-Terminus of GalE Induces tmRNA Activity in Escherichia coli. PLoS ONE, 2010, 5, e15207.                                                                                                                         | 2.5 | 9         |
| 75 | The structure of a contact-dependent growth-inhibition (CDI) immunity protein from <i>Neisseria<br/>meningitidis</i> MC58. Acta Crystallographica Section F, Structural Biology Communications, 2015, 71,<br>702-709. | 0.8 | 7         |
| 76 | Activation of an anti-bacterial toxin by the biosynthetic enzyme CysK: mechanism of binding, interaction specificity and competition with cysteine synthase. Scientific Reports, 2017, 7, 8817.                       | 3.3 | 7         |
| 77 | The Cytoplasm-Entry Domain of Antibacterial CdiA Is a Dynamic α-Helical Bundle with<br>Disulfide-Dependent Structural Features. Journal of Molecular Biology, 2019, 431, 3203-3216.                                   | 4.2 | 7         |
| 78 | Genetic Evidence for SecY Translocon-Mediated Import of Two Contact-Dependent Growth Inhibition<br>(CDI) Toxins. MBio, 2021, 12, .                                                                                    | 4.1 | 6         |
| 79 | Escherichia coli EC93 deploys two plasmid-encoded class I contact-dependent growth inhibition systems for antagonistic bacterial interactions. Microbial Genomics, 2021, 7, .                                         | 2.0 | 6         |
| 80 | Functional and Structural Diversity of Bacterial Contact-Dependent Growth Inhibition Effectors.<br>Frontiers in Molecular Biosciences, 2022, 9, 866854.                                                               | 3.5 | 6         |
| 81 | Genome Engineering Using Targeted Oligonucleotide Libraries and Functional Selection. Methods in<br>Molecular Biology, 2011, 765, 71-82.                                                                              | 0.9 | 4         |
| 82 | Lipidation of Class IV CdiA Effector Proteins Promotes Target Cell Recognition during Contact-Dependent Growth Inhibition. MBio, 2021, 12, e0253021.                                                                  | 4.1 | 4         |
| 83 | Measuring Cell–Cell Binding Using Flow-Cytometry. Methods in Molecular Biology, 2015, 1329, 127-136.                                                                                                                  | 0.9 | 3         |