
Ijaz Hussain

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3456550/publications.pdf Version: 2024-02-01

IIAZ HUSSAIN

#	Article	IF	CITATIONS
1	Luminescence from Zinc Oxide Nanostructures and Polymers and their Hybrid Devices. Materials, 2010, 3, 2643-2667.	1.3	371
2	Interface trap characterization and electrical properties of Au-ZnO nanorod Schottky diodes by conductance and capacitance methods. Journal of Applied Physics, 2012, 112, .	1.1	101
3	ZnO-organic hybrid white light emitting diodes grown on flexible plastic using low temperature aqueous chemical method. Journal of Applied Physics, 2010, 108, .	1.1	84
4	Zinc oxide nanorods/polymer hybrid heterojunctions for white light emitting diodes. Journal Physics D: Applied Physics, 2011, 44, 224017.	1.3	60
5	Systematic study of interface trap and barrier inhomogeneities using I-V-T characteristics of Au/ZnO nanorods Schottky diode. Journal of Applied Physics, 2013, 113, .	1.1	50
6	Reduced graphene oxide nanocomposites for optoelectronics applications. Applied Physics A: Materials Science and Processing, 2019, 125, 1.	1.1	36
7	Study of luminescent centers in ZnO nanorods catalytically grown on 4H-p-SiC. Semiconductor Science and Technology, 2009, 24, 125015.	1.0	32
8	Depth-resolved cathodoluminescence study of zinc oxide nanorods catalytically grown on p-type 4H-SiC. Journal of Luminescence, 2010, 130, 963-968.	1.5	30
9	Nanoscale elastic modulus of single horizontal ZnO nanorod using nanoindentation experiment. Nanoscale Research Letters, 2012, 7, 146.	3.1	30
10	Piezoelectric power generation from zinc oxide nanowires grown on paper substrate. Physica Status Solidi - Rapid Research Letters, 2012, 6, 80-82.	1.2	28
11	Currentâ€transport studies and trap extraction of hydrothermally grown ZnO nanotubes using gold Schottky diode. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 748-752.	0.8	22
12	Annealing effect on the electrical and optical properties of Au/n-ZnO NWs Schottky diodes white LEDs. Superlattices and Microstructures, 2013, 62, 200-206.	1.4	13
13	Study of intrinsic white light emission and its components from ZnO-nanorods/p-polymer hybrid junctions grown on glass substrates. Journal of Materials Science, 2011, 46, 7437-7442.	1.7	12
14	Study of Radiative Defects Using Current-Voltage Characteristics in ZnO Rods Catalytically Grown on 4H-p-SiC. Journal of Nanomaterials, 2010, 2010, 1-5.	1.5	11
15	Growth, Structural and Optical Characterization of ZnO Nanotubes on Disposable-Flexible Paper Substrates by Low-Temperature Chemical Method. Journal of Nanotechnology, 2012, 2012, 1-6.	1.5	11
16	Enhancement of external quantum efficiency and quality of heterojunction white LEDs by varying the size of ZnO nanorods. Nanotechnology, 2017, 28, 245203.	1.3	11
17	Properties of dominant electron trap center in n-type SiC epilayers by means of deep level transient spectroscopy. Journal of Applied Physics, 2007, 101, 073706.	1.1	10
18	Study of Au/ZnO nanorods Schottky light-emitting diodes grown by low-temperature aqueous chemical method. Applied Physics A: Materials Science and Processing, 2010, 100, 467-472.	1.1	10

Ijaz Hussain

#	Article	IF	CITATIONS
19	Study of the Distribution of Radiative Defects and Reabsorption of the UV in ZnO Nanorods-Organic Hybrid White Light Emitting Diodes (LEDs). Materials, 2011, 4, 1260-1270.	1.3	10
20	Exploring the fluorescence properties of reduced graphene oxide with tunable device performance. Diamond and Related Materials, 2019, 94, 59-64.	1.8	10
21	Hybrid organic zinc oxide white-light-emitting diodes on disposable paper substrate. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 1600-1605.	0.8	8
22	Properties of Ga1â^'x Mnx N epilayers grown by plasma-assisted molecular beam epitaxy using Raman spectroscopy. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2006, 133, 102-107.	1.7	7
23	Enhancement of zinc interstitials in ZnO nanotubes grown on glass substrate by the hydrothermal method. Applied Physics A: Materials Science and Processing, 2012, 106, 151-156.	1.1	7
24	Solution processable inverted structure ZnO-organic hybrid heterojuction white LEDs. Optical Materials, 2018, 79, 322-326.	1.7	7
25	Study of lattice properties of Ga1â^'x Mnx N epilayers grown by plasma-assisted molecular beam epitaxy by means of optical techniques. Journal of Crystal Growth, 2006, 296, 174-178.	0.7	5
26	Luminescence properties of hole traps in homojunction gallium nitride diodes grown by metal organic vapour phase epitaxy. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2006, 130, 173-176.	1.7	4
27	Study of a saturation point to establish the doping density limit of silicon with graphene oxide. Materials Science in Semiconductor Processing, 2019, 96, 116-121.	1.9	4
28	ZnMgO-nanorod-based Schottky Light-emitting Diode Fabricated on n-SiC Substrate Using Low-temperature Method. Silicon, 2019, 11, 1755-1761.	1.8	4
29	Quantitative analysis of the Schottky interface of reduced graphene oxide Schottky diodes. Materials Research Express, 2020, 7, 095007.	0.8	3
30	Role of Zn-Interstitial Defect in the Ultraviolet Emission from ZnO. ECS Transactions, 2011, 35, 149-154.	0.3	2
31	Origin of Ultraviolet Luminescence from Bulk ZnO Thin Films Grown by Molecular Beam Epitaxy. Advanced Engineering Forum, 0, 1, 135-139.	0.3	1
32	Intrinsic white-light emission from zinc oxide nanorods heterojunctions on large-area substrates. Proceedings of SPIE, 2011, , .	0.8	1
33	Corrosion protection of commercial steel using stainless steel coatings deposited by Cathodic Arc Plasma Deposition technique. Protection of Metals and Physical Chemistry of Surfaces, 2012, 48, 371-375.	0.3	1
34	Luminous nanocomposite: a future material for optoelectronic applications. Materials Research Express, 2019, 6, 115629.	0.8	1
35	Influence of High Nitrogen Flux on Crystal Quality of Plasma-Assisted MBE Grown GaN Layers Using Raman Spectroscopy: Part-II. , 2011, , .		0
36	Modulating the ZnO NR shape to enhance the luminescence efficiency for optoelectronic applications. Materials Research Express, 2020, 7, 025042.	0.8	0

#	Article	IF	CITATIONS
37	Quantitative analysis of electrically active defects in Au/AlGaN/GaN HEMTs structure using capacitance–frequency and DLTS measurements. Journal of Physics Communications, 2021, 5, 125010.	0.5	Ο
38	Hybrid Nanocomposites for Organic Light-emitting Diodes. Results in Optics, 2022, , 100258.	0.9	0