Olga Borges

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3456188/publications.pdf

Version: 2024-02-01

52 papers	1,936 citations	26 h-index	253896 43 g-index
52	52	52	2501
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Photophysics and drug delivery behavior of methylene blue into Arabic-gum based hydrogel matrices. Materials Today Communications, 2021, 26, 101889.	0.9	8
2	Guidelines as a starting point to address the needs of small and medium enterprises regarding the Safe-by-Design of polymeric nanobiomaterials for drug delivery., 2020,, 259-271.		O
3	Unravelling the Immunotoxicity of Polycaprolactone Nanoparticles—Effects of Polymer Molecular Weight, Hydrolysis, and Blends. Chemical Research in Toxicology, 2020, 33, 2819-2833.	1.7	7
4	Chitosan Nanoparticles: Shedding Light on Immunotoxicity and Hemocompatibility. Frontiers in Bioengineering and Biotechnology, 2020, 8, 100.	2.0	57
5	Safe-by-Design of Glucan Nanoparticles: Size Matters When Assessing the Immunotoxicity. Chemical Research in Toxicology, 2020, 33, 915-932.	1.7	12
6	How the Lack of Chitosan Characterization Precludes Implementation of the Safe-by-Design Concept. Frontiers in Bioengineering and Biotechnology, 2020, 8, 165.	2.0	31
7	A Methodological Safe-by-Design Approach for the Development of Nanomedicines. Frontiers in Bioengineering and Biotechnology, 2020, 8, 258.	2.0	44
8	Chitosan-coated PLGA nanoparticles for the nasal delivery of ropinirole hydrochloride: In vitro and ex vivo evaluation of efficacy and safety. International Journal of Pharmaceutics, 2020, 589, 119776.	2.6	64
9	Biocompatible and high-magnetically responsive iron oxide nanoparticles for protein loading. Journal of Physics and Chemistry of Solids, 2019, 134, 273-285.	1.9	12
10	Poly(D,L-Lactic Acid) Nanoparticle Size Reduction Increases Its Immunotoxicity. Frontiers in Bioengineering and Biotechnology, 2019, 7, 137.	2.0	35
11	Early Interaction of Alternaria infectoria Conidia with Macrophages. Mycopathologia, 2019, 184, 383-392.	1.3	6
12	Optimization of Chitosan-α-casein Nanoparticles for Improved Gene Delivery: Characterization, Stability, and Transfection Efficiency. AAPS PharmSciTech, 2019, 20, 132.	1.5	15
13	Glucan Particles Are a Powerful Adjuvant for the HBsAg, Favoring Antiviral Immunity. Molecular Pharmaceutics, 2019, 16, 1971-1981.	2.3	25
14	Chitosan Plus Compound 48/80: Formulation and Preliminary Evaluation as a Hepatitis B Vaccine Adjuvant. Pharmaceutics, 2019, 11, 72.	2.0	29
15	Easy and effective method to generate endotoxin-free chitosan particles for immunotoxicology and immunopharmacology studies. Journal of Pharmacy and Pharmacology, 2019, 71, 920-928.	1.2	18
16	Hazard Assessment of Polymeric Nanobiomaterials for Drug Delivery: What Can We Learn From Literature So Far. Frontiers in Bioengineering and Biotechnology, 2019, 7, 261.	2.0	62
17	Oral treatment with T6-loaded yeast cell wall particles reduces the parasitemia in murine visceral leishmaniasis model. Scientific Reports, 2019, 9, 20080.	1.6	3
18	Polymeric nanoengineered HBsAg DNA vaccine designed in combination with β‑glucan. International Journal of Biological Macromolecules, 2019, 122, 930-939.	3.6	17

#	Article	IF	Citations
19	The Inclusion of Chitosan in Poly-ε-caprolactone Nanoparticles: Impact on the Delivery System Characteristics and on the Adsorbed Ovalbumin Secondary Structure. AAPS PharmSciTech, 2018, 19, 101-113.	1.5	13
20	Adjuvant Activity of Poly- $\hat{l}\mu$ -caprolactone/Chitosan Nanoparticles Characterized by Mast Cell Activation and IFN- \hat{l}^3 and IL-17 Production. Molecular Pharmaceutics, 2018, 15, 72-82.	2.3	28
21	Oral hepatitis B vaccine: chitosan or glucan based delivery systems for efficient HBsAg immunization following subcutaneous priming. International Journal of Pharmaceutics, 2018, 535, 261-271.	2.6	37
22	Mechanistic study of the adjuvant effect of chitosan-aluminum nanoparticles. International Journal of Pharmaceutics, 2018, 552, 7-15.	2.6	29
23	Exosomes as adjuvants for the recombinant hepatitis B antigen: First report. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 133, 1-11.	2.0	39
24	Chitosan: \hat{I}^2 -glucan particles as a new adjuvant for the hepatitis B antigen. European Journal of Pharmaceutics and Biopharmaceutics, 2018, 131, 33-43.	2.0	23
25	In vitro anti-Leishmania activity of T6 synthetic compound encapsulated in yeast-derived \hat{l}^2 -(1,3)-d-glucan particles. International Journal of Biological Macromolecules, 2018, 119, 1264-1275.	3.6	14
26	Interactions between copper(II) dibrominated salen complex and copolymeric micelles of P-123 and F-127. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 532, 583-591.	2.3	6
27	Association of chitosan and aluminium as a new adjuvant strategy for improved vaccination. International Journal of Pharmaceutics, 2017, 527, 103-114.	2.6	18
28	Poly-ϵ-caprolactone/chitosan nanoparticles provide strong adjuvant effect for hepatitis B antigen. Nanomedicine, 2017, 12, 2335-2348.	1.7	29
29	The effect of methacrylation on the behavior of Gum Arabic as pH-responsive matrix for colon-specific drug delivery. European Polymer Journal, 2016, 78, 326-339.	2.6	19
30	Poly- $\hat{l}\mu$ -caprolactone/Chitosan and Chitosan Particles: Two Recombinant Antigen Delivery Systems for Intranasal Vaccination. Methods in Molecular Biology, 2016, 1404, 697-713.	0.4	11
31	Immune response elicited by an intranasally delivered HBsAg low-dose adsorbed to poly-Îμ-caprolactone based nanoparticles. International Journal of Pharmaceutics, 2016, 504, 59-69.	2.6	41
32	Intranasal Administration of Novel Chitosan Nanoparticle/DNA Complexes Induces Antibody Response to Hepatitis B Surface Antigen in Mice. Molecular Pharmaceutics, 2016, 13, 472-482.	2.3	69
33	Effect of particulate adjuvant on the anthrax protective antigen dose required for effective nasal vaccination. Vaccine, 2015, 33, 3609-3613.	1.7	22
34	Development of a novel adjuvanted nasal vaccine: C48/80 associated with chitosan nanoparticles as a path to enhance mucosal immunity. European Journal of Pharmaceutics and Biopharmaceutics, 2015, 93, 149-164.	2.0	66
35	Synthesis and controlled curcumin supramolecular complex release from pH-sensitive modified gum-arabic-based hydrogels. RSC Advances, 2015, 5, 94519-94533.	1.7	33
36	Nasal Vaccines Against Hepatitis B: An Update. Current Pharmaceutical Biotechnology, 2015, 16, 882-890.	0.9	10

#	Article	IF	CITATIONS
37	Validation of a New 96-Well Plate Spectrophotometric Method for the Quantification of Compound 48/80 Associated with Particles. AAPS PharmSciTech, 2013, 14, 649-655.	1.5	5
38	Mucosal Vaccination: Opportunities and Challenges. , 2013, , 65-80.		0
39	A New Strategy Based on Smrho Protein Loaded Chitosan Nanoparticles as a Candidate Oral Vaccine against Schistosomiasis. PLoS Neglected Tropical Diseases, 2012, 6, e1894.	1.3	40
40	Chitosan-Based Nanoparticles as a Hepatitis B Antigen Delivery System. Methods in Enzymology, 2012, 509, 127-142.	0.4	12
41	Oral Vaccination Based on DNA-Chitosan Nanoparticles against <i>Schistosoma mansoni</i> Infection. Scientific World Journal, The, 2012, 2012, 1-11.	0.8	31
42	Progress Towards a Needle-Free Hepatitis B Vaccine. Pharmaceutical Research, 2011, 28, 986-1012.	1.7	19
43	Hepatitis B needle-free vaccines: a step closer. Clinical Investigation, 2011, 1, 767-770.	0.0	O
44	Recent Developments in the Nasal Immunization against Anthrax. World Journal of Vaccines, 2011, 01, 79-91.	0.8	6
45	Mucosal Vaccines: Recent Progress in Understanding the Natural Barriers. Pharmaceutical Research, 2010, 27, 211-223.	1.7	70
46	Alginate coated chitosan nanoparticles are an effective subcutaneous adjuvant for hepatitis B surface antigen. International Immunopharmacology, 2008, 8, 1773-1780.	1.7	97
47	Immune response by nasal delivery of hepatitis B surface antigen and codelivery of a CpG ODN in alginate coated chitosan nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 69, 405-416.	2.0	149
48	Induction of lymphocytes activated marker CD69 following exposure to chitosan and alginate biopolymers. International Journal of Pharmaceutics, 2007, 337, 254-264.	2.6	44
49	Evaluation of the immune response following a short oral vaccination schedule with hepatitis B antigen encapsulated into alginate-coated chitosan nanoparticles. European Journal of Pharmaceutical Sciences, 2007, 32, 278-290.	1.9	109
50	Uptake studies in rat Peyer's patches, cytotoxicity and release studies of alginate coated chitosan nanoparticles for mucosal vaccination. Journal of Controlled Release, 2006, 114, 348-358.	4.8	164
51	Permeation of sodium dodecyl sulfate through polyaniline-modified cellulose acetate membranes. Polymer, 2005, 46, 5918-5928.	1.8	31
52	Preparation of coated nanoparticles for a new mucosal vaccine delivery system. International Journal of Pharmaceutics, 2005, 299, 155-166.	2.6	207