Zdeněk KejÃ-k

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3456175/publications.pdf

Version: 2024-02-01

394286 434063 1,034 48 19 31 citations g-index h-index papers 53 53 53 1470 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Non-Psychotropic Cannabinoids as Inhibitors of TET1 Protein. Bioorganic Chemistry, 2022, 124, 105793.	2.0	7
2	Spectroscopic study of in situâ€formed metallocomplexes of proton pump inhibitors in water. Chemical Biology and Drug Design, 2021, 97, 305-314.	1.5	4
3	Iron Complexes of Flavonoids-Antioxidant Capacity and Beyond. International Journal of Molecular Sciences, 2021, 22, 646.	1.8	58
4	Novel Mitochondria-targeted Drugs for Cancer Therapy. Mini-Reviews in Medicinal Chemistry, 2021, 21, 816-832.	1.1	12
5	Estrogen Receptor Modulators in Viral Infections Such as SARSâ^'CoVâ^'2: Therapeutic Consequences. International Journal of Molecular Sciences, 2021, 22, 6551.	1.8	14
6	Pentamethinium Salts Nanocomposite for Electrochemical Detection of Heparin. Materials, 2021, 14, 5357.	1.3	2
7	Synthesis and biological evaluation of cationic TopFluor cholesterol analogues. Bioorganic Chemistry, 2021, 117, 105410.	2.0	3
8	Circulating Tumour Cells (CTCs) in NSCLC: From Prognosis to Therapy Design. Pharmaceutics, 2021, 13, 1879.	2.0	11
9	Formaldehyde Reacts with Amino Acids and Peptides with a Potential Role in Acute Methanol Intoxication. Journal of Analytical Toxicology, 2020, 44, 880-885.	1.7	3
10	Role of mtDNA disturbances in the pathogenesis of Alzheimer's and Parkinson's disease. DNA Repair, 2020, 91-92, 102871.	1.3	25
11	Strategy for improved therapeutic efficiency of curcumin in the treatment of gastric cancer. Biomedicine and Pharmacotherapy, 2019, 118, 109278.	2.5	39
12	Hydrazones as novel epigenetic modulators: Correlation between TET 1 protein inhibition activity and their iron(II) binding ability. Bioorganic Chemistry, 2019, 88, 102809.	2.0	13
13	Benzoisothiazole-1,1-dioxide-based synthetic receptor for zinc ion recognition in aqueous medium and its interaction with nucleic acids. Supramolecular Chemistry, 2019, 31, 19-27.	1.5	8
14	Pentamethinium salts as ligands for cancer: Sulfated polysaccharide co-receptors as possible therapeutic target. Bioorganic Chemistry, 2019, 82, 74-85.	2.0	7
15	Pigments from Filamentous Ascomycetes for Combination Therapy. Current Medicinal Chemistry, 2019, 26, 3812-3834.	1.2	O
16	Metallomics for Alzheimer's disease treatment: Use of new generation of chelators combining metal-cation binding and transport properties. European Journal of Medicinal Chemistry, 2018, 150, 140-155.	2.6	20
17	Epigenetic agents in combined anticancer therapy. Future Medicinal Chemistry, 2018, 10, 1113-1130.	1.1	16
18	Perimidine-based synthetic receptors for determination of copper(II) in water solution. Supramolecular Chemistry, 2018, 30, 218-226.	1.5	11

#	Article	IF	CITATIONS
19	Water soluble chromone Schiff base derivatives as fluorescence receptor for aluminium(III). Supramolecular Chemistry, 2017, 29, 1-7.	1.5	27
20	Optical probes and sensors as perspective tools in epigenetics. Bioorganic and Medicinal Chemistry, 2017, 25, 2295-2306.	1.4	3
21	Methinium colorimetric sensors for the determination of cholesterol sulfate in an aqueous medium. Sensors and Actuators B: Chemical, 2017, 245, 1032-1038.	4.0	4
22	Dimethinium Heteroaromatic Salts as Building Blocks for Dualâ€Fluorescence Intracellular Probes. ChemPhotoChem, 2017, 1, 442-450.	1.5	2
23	Aluminium(III) sensing by pyridoxal hydrazone utilising the chelation enhanced fluorescence effect. Journal of Luminescence, 2016, 180, 269-277.	1.5	39
24	Specific ligands based on Tröger's base derivatives for the recognition of glycosaminoglycans. Dyes and Pigments, 2016, 134, 212-218.	2.0	10
25	Striking Antitumor Activity of a Methinium System with Incorporated Quinoxaline Unit Obtained by Spontaneous Cyclization. ChemBioChem, 2015, 16, 555-558.	1.3	8
26	New method for recognition of sterol signalling molecules: Methinium salts as receptors for sulphated steroids. Steroids, 2015, 94, 15-20.	0.8	7
27	Caffeine–hydrazones as anticancer agents with pronounced selectivity toward T-lymphoblastic leukaemia cells. Bioorganic Chemistry, 2015, 60, 19-29.	2.0	42
28	Design, Synthesis, Selective Recognition Properties and Targeted Drug Delivery Application. Handbook of Porphyrin Science, 2014, , 1-75.	0.3	3
29	Pentamethinium fluorescent probes: The impact of molecular structure on photophysical properties and subcellular localization. Dyes and Pigments, 2014, 107, 51-59.	2.0	22
30	Rational Design of Chemical Ligands for Selective Mitochondrial Targeting. Bioconjugate Chemistry, 2013, 24, 1445-1454.	1.8	27
31	A novel sorbent for chromatographic separations: A silica matrix modified with nonâ€covalently bonded tetrakis(βâ€cyclodextrin)–porphyrin conjugates. Journal of Separation Science, 2013, 36, 2072-2080.	1.3	4
32	Supramolecular approach for target transport of photodynamic anticancer agents. Supramolecular Chemistry, 2012, 24, 106-116.	1.5	10
33	Combination of two chromophores: Synthesis and PDT application of porphyrin–pentamethinium conjugate. Bioorganic and Medicinal Chemistry Letters, 2012, 22, 82-84.	1.0	16
34	Coordination conjugates of therapeutic proteins with drug carriers: A new approach for versatile advanced drug delivery. Bioorganic and Medicinal Chemistry Letters, 2011, 21, 5514-5520.	1.0	29
35	Selective recognition of a saccharide-type tumor marker with natural and synthetic ligands: a new trend in cancer diagnosis. Analytical and Bioanalytical Chemistry, 2010, 398, 1865-1870.	1.9	20
36	Porphyrinâ^'Cyclodextrin Conjugates as a Nanosystem for Versatile Drug Delivery and Multimodal Cancer Therapy. Journal of Medicinal Chemistry, 2010, 53, 128-138.	2.9	117

ZdenÄ>k KejÃk

#	Article	IF	CITATION
37	Synthesis of unsymmetric cyanine dye via merocyanine and their interaction with DNA. Collection of Czechoslovak Chemical Communications, 2009, 74, 1081-1090.	1.0	7
38	Glycol Porphyrin Derivatives as Potent Photodynamic Inducers of Apoptosis in Tumor Cells. Journal of Medicinal Chemistry, 2008, 51, 5964-5973.	2.9	64
39	Porphyrin–bile acid conjugates: from saccharide recognition in the solution to the selective cancer cell fluorescence detection. Organic and Biomolecular Chemistry, 2008, 6, 1548.	1.5	48
40	Optical sensing of sulfate by polymethinium salt receptors: colorimetric sensor for heparin. Chemical Communications, 2008, , 1901.	2.2	61
41	Synthesis of Highly Functionalized Fluorinated Porphyrins. Supramolecular Chemistry, 2008, 20, 237-242.	1.5	17
42	Interpretation of Synchrotron Radiation Circular Dichroism Spectra of Anionic, Cationic, and Zwitterionic Dialanine Forms. Journal of Physical Chemistry A, 2007, 111, 2750-2760.	1.1	33
43	Substrate specificity, regioselectivity and hydrolytic activity of lipases activated from Geotrichum sp Biochemical Engineering Journal, 2007, 34, 209-216.	1.8	28
44	Optical sensing system for ATP using porphyrin–alkaloid conjugates. Chemical Communications, 2006, , 1533.	2.2	45
45	Geometry and Solvent Dependence of the Electronic Spectra of the Amide Group and Consequences for Peptide Circular Dichroism. Journal of Physical Chemistry A, 2006, 110, 4702-4711.	1.1	36
46	Branched polyfluorinated triflateâ€"An easily available polyfluoroalkylating agent. Journal of Fluorine Chemistry, 2006, 127, 386-390.	0.9	9
47	Enantioselective properties of induced lipases from Geotrichum. Enzyme and Microbial Technology, 2005, 37, 481-486.	1.6	26
48	Chromophoric Binaphthyl Derivatives, Organic Letters, 2005, 7, 3661-3664.	2.4	9