Diego San Mauro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3455544/publications.pdf Version: 2024-02-01

DIECO SAN MALIRO

#	Article	IF	CITATIONS
1	Genomic Fishing and Data Processing for Molecular Evolution Research. Methods and Protocols, 2022, 5, 26.	0.9	4
2	Insights into the skin of caecilian amphibians from gene expression profiles. BMC Genomics, 2020, 21, 515.	1.2	4
3	Feeding specialization and longer generation time are associated with relatively larger brains in bees. Proceedings of the Royal Society B: Biological Sciences, 2020, 287, 20200762.	1.2	12
4	What lies beneath? Molecular evolution during the radiation of caecilian amphibians. BMC Genomics, 2019, 20, 354.	1.2	7
5	Inadvertent Paralog Inclusion Drives Artifactual Topologies and Timetree Estimates in Phylogenomics. Molecular Biology and Evolution, 2019, 36, 1344-1356.	3.5	56
6	Multi-tissue transcriptomes of caecilian amphibians highlight incomplete knowledge of vertebrate gene families. DNA Research, 2019, 26, 13-20.	1.5	19
7	Evidence of positive selection suggests possible role of aquaporins in the water-to-land transition of mudskippers. Organisms Diversity and Evolution, 2018, 18, 499-514.	0.7	8
8	Evolutionary history of the podoplanin gene. Gene Reports, 2018, 13, 28-37.	0.4	3
9	Müller glia reactivity follows retinal injury despite the absence of the glial fibrillary acidic protein gene in Xenopus. Developmental Biology, 2017, 426, 219-235.	0.9	26
10	The role of wetâ€≢one fragmentation inÂshaping biodiversity patterns in peninsular India: insights from the caecilian amphibian <i>Gegeneophis</i> . Journal of Biogeography, 2016, 43, 1091-1102.	1.4	30
11	Next-Generation Mitogenomics: A Comparison of Approaches Applied to Caecilian Amphibian Phylogeny. PLoS ONE, 2016, 11, e0156757.	1.1	13
12	Life-history evolution and mitogenomic phylogeny of caecilian amphibians. Molecular Phylogenetics and Evolution, 2014, 73, 177-189.	1.2	91
13	Molecular phylogenetics of Gobioidei and phylogenetic placement of European gobies. Molecular Phylogenetics and Evolution, 2013, 69, 619-633.	1.2	160
14	Experimental Design in Phylogenetics: Testing Predictions from Expected Information. Systematic Biology, 2012, 61, 661-674.	2.7	14
15	The origin of modern frogs (Neobatrachia) was accompanied by acceleration in mitochondrial and nuclear substitution rates. BMC Genomics, 2012, 13, 626.	1.2	53
16	A new species of sand racer, Psammodromus (Squamata: Lacertidae), from the Western Iberian Peninsula. Zootaxa, 2012, 3205, 41.	0.2	12
17	Ancestral Developmental Potential Facilitates Parallel Evolution in Ants. Science, 2012, 335, 79-82.	6.0	164
18	Discovery of a new family of amphibians from northeast India with ancient links to Africa. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 2396-2401.	1.2	95

Diego San Mauro

#	Article	IF	CITATIONS
19	A nine-family classification of caecilians (Amphibia: Gymnophiona). Zootaxa, 2011, 2874, 41.	0.2	105
20	Integrative analyses of speciation and divergence in Psammodromus hispanicus (Squamata: Lacertidae). BMC Evolutionary Biology, 2011, 11, 347.	3.2	32
21	Systematics and ecology of the caecilian <i>Crotaphatrema lamottei</i> (Nussbaum) (Amphibia:) Tj ETQq1 1 0.78	4314 rgBT 0.2	Överlock 1
22	Reversal to air-driven sound production revealed by a molecular phylogeny of tongueless frogs, family Pipidae. BMC Evolutionary Biology, 2011, 11, 114.	3.2	47
23	Molecular systematics of caeciliid caecilians (Amphibia: Gymnophiona) of the Western Ghats, India. Molecular Phylogenetics and Evolution, 2011, 59, 698-707.	1.2	24
24	The systematics of Boulengerula fischeri (Amphibia: Gymnophiona: Caeciliidae) based on morphological and molecular data. Zootaxa, 2011, 2767, 14.	0.2	6
25	Molecular systematics: A synthesis of the common methods and the state of knowledge. Cellular and Molecular Biology Letters, 2010, 15, 311-41.	2.7	51
26	A multilocus timescale for the origin of extant amphibians. Molecular Phylogenetics and Evolution, 2010, 56, 554-561.	1.2	101
27	The complete mitochondrial genome of the relict frogLeiopelma archeyi: Insights into the root of the frog Tree of Life. Mitochondrial DNA, 2010, 21, 173-182.	0.6	32
28	Effect of taxon sampling on recovering the phylogeny of squamate reptiles based on complete mitochondrial genome and nuclear gene sequence data. Gene, 2009, 441, 12-21.	1.0	66
29	Experimental Design in Caecilian Systematics: Phylogenetic Information of Mitochondrial Genomes and Nuclear rag1. Systematic Biology, 2009, 58, 425-438.	2.7	27
30	Mitochondrial phylogeny of Anura (Amphibia): A case study of congruent phylogenetic reconstruction using amino acid and nucleotide characters. Gene, 2006, 366, 228-237.	1.0	40
31	A Hotspot of Gene Order Rearrangement by Tandem Duplication and Random Loss in the Vertebrate Mitochondrial Genome. Molecular Biology and Evolution, 2006, 23, 227-234.	3.5	200
32	Initial Diversification of Living Amphibians Predated the Breakup of Pangaea. American Naturalist, 2005, 165, 590-599.	1.0	228
33	Phylogeny of caecilian amphibians (Gymnophiona) based on complete mitochondrial genomes and nuclear RAG1. Molecular Phylogenetics and Evolution, 2004, 33, 413-427.	1.2	163
34	Phylogenetic relationships of discoglossid frogs (Amphibia:Anura:Discoglossidae) based on complete mitochondrial genomes and nuclear genes. Gene, 2004, 343, 357-366.	1.0	65
35	Variations in the arrangement of South American sea lion (<1>Otaria flavescens 1) male vocalizations during the breeding season: patterns and contexts. Aquatic Mammals, 2003, 29, 289-296.	0.4	2