
Anna Maria D'Alessandro

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3454622/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Carnitines as Mitochondrial Modulators of Oocyte and Embryo Bioenergetics. Antioxidants, 2022, 11, 745.	5.1	9
2	Phytochemistry and Biological Activity of Medicinal Plants in Wound Healing: An Overview of Current Research. Molecules, 2022, 27, 3566.	3.8	33
3	Crocetin Mitigates Irradiation Injury in an In Vitro Model of the Pubertal Testis: Focus on Biological Effects and Molecular Mechanisms. Molecules, 2021, 26, 1676.	3.8	7
4	Mitochondrial Sirtuins in Reproduction. Antioxidants, 2021, 10, 1047.	5.1	32
5	Regulatory Functions of L-Carnitine, Acetyl, and Propionyl L-Carnitine in a PCOS Mouse Model: Focus on Antioxidant/Antiglycative Molecular Pathways in the Ovarian Microenvironment. Antioxidants, 2020, 9, 867.	5.1	26
6	Methylglyoxal-Dependent Glycative Stress and Deregulation of SIRT1 Functional Network in the Ovary of PCOS Mice. Cells, 2020, 9, 209.	4.1	20
7	Crocetin and Crocin from Saffron in Cancer Chemotherapy and Chemoprevention. Anti-Cancer Agents in Medicinal Chemistry, 2019, 19, 38-47.	1.7	60
8	SIRT1 participates in the response to methylglyoxal-dependent glycative stress in mouse oocytes and ovary. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2019, 1865, 1389-1401.	3.8	39
9	The Natural Carotenoid Crocetin and the Synthetic Tellurium Compound AS101 Protect the Ovary against Cyclophosphamide by Modulating SIRT1 and Mitochondrial Markers. Oxidative Medicine and Cellular Longevity, 2017, 2017, 1-14.	4.0	35
10	Effects of Crocetin Esters and Crocetin from Crocus sativus L. on Aortic Contractility in Rat Genetic Hypertension. Molecules, 2015, 20, 17570-17584.	3.8	31
11	Sirtuin Functions in Female Fertility: Possible Role in Oxidative Stress and Aging. Oxidative Medicine and Cellular Longevity, 2015, 2015, 1-11.	4.0	110
12	Antitumor Effects of Saffron-Derived Carotenoids in Prostate Cancer Cell Models. BioMed Research International, 2014, 2014, 1-12.	1.9	95
13	Crocetin, a Carotenoid Derived from Saffron (<i>Crocus sativus</i> L.), Improves Acetylcholine-Induced Vascular Relaxation in Hypertension. Journal of Vascular Research, 2014, 51, 393-404.	1.4	39
14	SIRT1 signalling protects mouse oocytes against oxidative stress and is deregulated during aging. Human Reproduction, 2014, 29, 2006-2017.	0.9	143
15	<i>Crocus Sativus</i> Stigma Extract and Its Major Constituent Crocin Possess Significant Antiproliferative Properties Against Human Prostate Cancer. Nutrition and Cancer, 2013, 65, 930-942.	2.0	79
16	Increased levels of DNA methyltransferases are associated with the tumorigenic capacity of prostate cancer cells. Oncology Reports, 2013, 29, 1189-1195.	2.6	55
17	Possible Involvement of Advanced Glycation End Products in Periodontal Diseases. International Journal of Immunopathology and Pharmacology, 2010, 23, 683-691.	2.1	26
18	Azacitidine improves antitumor effects of docetaxel and cisplatin in aggressive prostate cancer models. Endocrine-Related Cancer, 2009, 16, 401-413.	3.1	63

#	Article	IF	CITATIONS
19	Pattern expression of glycan residues in AZT-treated K562 cells analyzed by lectin cytochemistry. Molecular and Cellular Biochemistry, 2007, 300, 29-37.	3.1	16
20	The effect of AZT and chloroquine on the activities of ricin and a saporin–transferrin chimeric toxin. Biochemical Pharmacology, 2005, 70, 560-569.	4.4	13
21	Effects of AZT on cellular iron homeostasis. BioMetals, 2004, 17, 443-450.	4.1	8
22	Protein glycans alteration and a different distribution of some enzymatic activities involved in the glycan processing are found in AZT-treated K562 cells. Molecular and Cellular Biochemistry, 2003, 252, 45-51.	3.1	9
23	Evidences that zidovudine (AZT) could not be directly responsible for iron overload in AZT-treated patients: an in vitro study. Clinica Chimica Acta, 2000, 300, 119-130.	1.1	12
24	Deglycosylation of hen ovotransferrin under mild conditions: effect on the immunoreactivity and biological activity. Glycobiology, 1999, 9, v-viii.	2.5	1
25	Peroxidase-labelling of human serum transferrin by conjugation to oligosaccharide moieties. Clinica Chimica Acta, 1998, 274, 189-197.	1.1	8
26	Primary structure of the major glycan from human seminal transferrin. The Protein Journal, 1994, 13, 31-36.	1.1	5
27	The binding of human serum transferrin to its specific receptor reconstituted into liposomes. Cellular Signalling, 1994, 6, 83-90.	3.6	8
28	Liposome Reconstitution of Native or Reduced and Alkylated Transferrin Receptor. Journal of Liposome Research, 1993, 3, 679-685.	3.3	0
29	Structural analysis of seminal and serum human transferrin by second derivative spectrometry and fluorescence measurements. The Protein Journal, 1992, 11, 165-169.	1.1	4
30	Immunohistochemical localization of ascorbate oxidase in cucurbita pepo medullosa. Plant Science, 1989, 64, 61-66.	3.6	33
31	Different patterns of human serum transferrin on isoelectric focusing using synthetic carrier ampholytes or immobilized pH gradients. Electrophoresis, 1988, 9, 80-83.	2.4	13