Weike Su

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/34546/publications.pdf

Version: 2024-02-01

97 papers	2,276 citations	257450 24 h-index	254184 43 g-index
97 all docs	97 docs citations	97 times ranked	2385 citing authors

#	Article	IF	CITATIONS
1	Preparation of olmesartan medoxomil solid dispersion with sustained release performance by mechanochemical technology. Drug Delivery and Translational Research, 2022, 12, 589-602.	5.8	4
2	Preparation, physicochemical and pharmacological study of 10-hydroxycamptothecin solid dispersion with complexation agent – xylan-nonanoic acid amphiphilic conjugates. International Journal of Biological Macromolecules, 2022, 204, 224-233.	7. 5	3
3	Development of a continuous flow process for the synthesis of mesotrione. Journal of Flow Chemistry, 2022, 12, 197-205.	1.9	2
4	Revisiting aromatic diazotization and aryl diazonium salts in continuous flow: highlighted research during 2001–2021. Reaction Chemistry and Engineering, 2022, 7, 1247-1275.	3.7	18
5	Generation of aryl radicals from in situ in si	9.0	10
6	State of the art and applications in nanostructured biocatalysis. Biotechnology and Biotechnological Equipment, 2022, 36, 118-134.	1.3	7
7	Preparation of DNC Solid Dispersion by a Mechanochemical Method with Glycyrrhizic Acid and Polyvinylpyrrolidone to Enhance Bioavailability and Activity. Polymers, 2022, 14, 2037.	4.5	2
8	Mechanically induced solvent-free esterification method at room temperature. RSC Advances, 2021, 11, 5080-5085.	3.6	4
9	Liquidâ€Assisted Grinding Mechanochemistry in the Synthesis of Pharmaceuticals. Advanced Synthesis and Catalysis, 2021, 363, 1246-1271.	4.3	170
10	Br \tilde{A}_i nsted acid-catalyzed chlorination of aromatic carboxylic acids. Phosphorus, Sulfur and Silicon and the Related Elements, 2021, 196, 685-689.	1.6	1
11	Solubility, Permeability, Anti-Inflammatory Action and In Vivo Pharmacokinetic Properties of Several Mechanochemically Obtained Pharmaceutical Solid Dispersions of Nimesulide. Molecules, 2021, 26, 1513.	3.8	12
12	Hydrogenation of nitroarenes in continuous flow with TPP/Raney Ni. Journal of Flow Chemistry, 2021, 11, 823-830.	1.9	6
13	Inositol hexanicotinate self-micelle solid dispersion is an efficient drug delivery system in the mouse model of non-alcoholic fatty liver disease. International Journal of Pharmaceutics, 2021, 602, 120576.	5.2	6
14	Preparation of camptothecin micelles self-assembled from disodium glycyrrhizin and tannic acid with enhanced antitumor activity. European Journal of Pharmaceutics and Biopharmaceutics, 2021, 164, 75-85.	4.3	18
15	High yielding, one-step mechano-enzymatic hydrolysis of cellulose to cellulose nanocrystals without bulk solvent. Bioresource Technology, 2021, 331, 125015.	9.6	22
16	Mechanochemical Magnesium-Mediated Minisci C–H Alkylation of Pyrimidines with Alkyl Bromides and Chlorides. Organic Letters, 2021, 23, 6423-6428.	4.6	27
17	Preparation of astaxanthin micelles self-assembled by a mechanochemical method from hydroxypropyl \hat{l}^2 -cyclodextrin and glyceryl monostearate with enhanced antioxidant activity. International Journal of Pharmaceutics, 2021, 605, 120799.	5.2	18
18	NMR-based Metabolomic Techniques Identify the Anticancer Effects of Three Polyphyllins in HepG2 Cells. Current Pharmaceutical Analysis, 2021, 17, .	0.6	0

#	Article	IF	Citations
19	Insight into Fundamental Rules of Phenylenediamines Selective Monoacylation by the Comparisons of Kinetic Characteristics in Microreactor. Bulletin of the Korean Chemical Society, 2021, 42, 1336.	1.9	1
20	Two approaches for the synthesis of levo-praziquantel. Organic and Biomolecular Chemistry, 2021, 19, 4507-4514.	2.8	10
21	Mechanochemical Asymmetric Crossâ€Dehydrogenative Coupling Reaction: Liquidâ€Assisted Grinding Enables Reaction Acceleration and Enantioselectivity Control. Advanced Synthesis and Catalysis, 2020, 362, 893-902.	4.3	21
22	Palladium-Catalyzed C–H/C–H Cross-Coupling by Mechanochemistry: Direct Alkenylation and Heteroarylation of N1-Protected 1 <i>H</i> Indazoles. Journal of Organic Chemistry, 2020, 85, 1009-1021.	3.2	31
23	Synthesis of a Crizotinib Intermediate via Highly Efficient Catalytic Hydrogenation in Continuous Flow. Organic Process Research and Development, 2020, 24, 2252-2259.	2.7	15
24	Selective hydrogenation of nitroaromatics to $\langle i \rangle N \langle j \rangle$ -arylhydroxylamines in a micropacked bed reactor with passivated catalyst. RSC Advances, 2020, 10, 28585-28594.	3.6	4
25	Continuous-flow double diazotization for the synthesis of m-difluorobenzene via Balz-Schiemann reaction. Journal of Flow Chemistry, 2020, 10, 589-596.	1.9	8
26	Dinitration of o-toluic acid in continuous-flow: process optimization and kinetic study. Journal of Flow Chemistry, 2020, 10, 429-436.	1.9	10
27	Mechanochemical cleavage of lignin models and lignin <i>via</i> oxidation and a subsequent base-catalyzed strategy. Green Chemistry, 2020, 22, 3489-3494.	9.0	31
28	Improving the anticancer activity of platinum(<scp>iv</scp>) prodrugs using a dual-targeting strategy with a dichloroacetate axial ligand. RSC Advances, 2019, 9, 22240-22247.	3.6	11
29	Mechanochemical Oxidative Heck Coupling of Activated and Unactivated Alkenes: A Chemoâ€, Regio―and Stereo ontrolled Synthesis of Alkenylbenzenes. Advanced Synthesis and Catalysis, 2019, 361, 5133-5139.	4.3	20
30	Preparation, physicochemical and pharmacological study of curcumin solid dispersion with an arabinogalactan complexation agent. International Journal of Biological Macromolecules, 2019, 128, 158-166.	7. 5	30
31	Green and catalyst-free synthesis of deoxyarbutin in continuous-flow. Reaction Chemistry and Engineering, 2019, 4, 927-931.	3.7	7
32	Effects of anthraquinones from Cassia occidentalis L. on ovalbumin-induced airways inflammation in a mouse model of allergic asthma. Journal of Ethnopharmacology, 2018, 221, 1-9.	4.1	33
33	Kilogram-Scale Synthesis of 2,4-Dichloro-5-fluorobenzoic Acid by Air Oxidation under the Continuous-Flow Process. Organic Process Research and Development, 2018, 22, 252-256.	2.7	10
34	Extraction, partial characterization and bioactivity of polysaccharides from Senecio scandens BuchHam. International Journal of Biological Macromolecules, 2018, 109, 535-543.	7.5	14
35	Preparation of curcumin self-micelle solid dispersion with enhanced bioavailability and cytotoxic activity by mechanochemistry. Drug Delivery, 2018, 25, 198-209.	5.7	102
36	Conversion of 2,4-difluoroaniline to 1,3-difluorobenzene using a continuous-flow reactor. Journal of Flow Chemistry, $2018, 8, 51-57$.	1.9	10

#	Article	IF	Citations
37	A continuous-flow procedure for the synthesis of 4-Benzylidene-pyrazol-5-one derivatives. Journal of Flow Chemistry, 2018, 8, 29-34.	1.9	3
38	One-Pot Cascade Heterocyclization of \hat{l}^3 - and \hat{l}^2 -Ketomalononitriles to 2,4-Dichloro-Substituted Pyrano[2,3-d]pyrimidines and Furo[2,3-d]pyrimidines Mediated by Triphosgene and Triphenylphosphine Oxide. Journal of Organic Chemistry, 2018, 83, 6423-6431.	3.2	15
39	Mechanochemical preparation of kaempferol intermolecular complexes for enhancing the solubility and bioavailability. Drug Development and Industrial Pharmacy, 2018, 44, 1924-1932.	2.0	15
40	Physicochemical and Toxic Properties of Novel Genipin Drug Delivery Systems Prepared by Mechanochemistry. Current Drug Delivery, 2018, 15, 727-736.	1.6	4
41	A Fully Continuous-Flow Process for the Synthesis of $\langle i \rangle p \langle j \rangle$. Impurity Analysis and Process Optimization. Organic Process Research and Development, 2017, 21, 1644-1652.	2.7	26
42	Cobalt(III)-Catalyzed Fast and Solvent-Free C–H Allylation of Indoles Using Mechanochemistry. Journal of Organic Chemistry, 2017, 82, 10665-10672.	3.2	75
43	Copper-Catalyzed Cyclization for Access to 6 <i>H</i> -Chromeno[4,3- <i>b</i>)quinolin-6-ones Employing DMF as the Carbon Source. Journal of Organic Chemistry, 2017, 82, 9047-9053.	3.2	43
44	Encaging palladium(0) in layered double hydroxide: A sustainable catalyst for solvent-free and ligand-free Heck reaction in a ball mill. Beilstein Journal of Organic Chemistry, 2017, 13, 1661-1668.	2.2	14
45	Selective Extraction of Gardenia Yellow and Geniposide from Gardenia jasminoides by Mechanochemistry. Molecules, 2016, 21, 540.	3.8	19
46	Selective Extraction of Flavonoids from Sophora flavescens Ait. by Mechanochemistry. Molecules, 2016, 21, 989.	3.8	16
47	Investigation the inclusion complexes of valsartan with polysaccharide arabinogalactan from larch Larix sibirica and (2-hydroxypropyl)-l²-cyclodextrin: preparation, characterization and physicochemical properties. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2016, 85, 93-104.	1.6	10
48	Extraction, characterization, and biological activity of polysaccharides from Sophora flavescens Ait International Journal of Biological Macromolecules, 2016, 93, 459-467.	7.5	26
49	A Novel Strategy for the Synthesis of Bromo-Substituted Cholestenone and its New Application to a Synthesis of 11±-Hydroxycholesterol. Journal of Chemical Research, 2016, 40, 407-409.	1.3	1
50	Continuous-Flow Diazotization for Efficient Synthesis of Methyl 2-(Chlorosulfonyl)benzoate: An Example of Inhibiting Parallel Side Reactions. Organic Process Research and Development, 2016, 20, 2116-2123.	2.7	17
51	A Fast and Reliable UPLC-PAD Fingerprint Analysis of (i) Chimonanthus salicifolius (/i) Combined with Chemometrics Methods. Journal of Chromatographic Science, 2016, 54, 1213-1219.	1.4	8
52	Multiâ€constituent determination and fingerprint analysis of <i>Scutellaria indica</i> L. using ultra high performance liquid chromatography coupled with quadrupole timeâ€ofâ€flight mass spectrometry. Journal of Separation Science, 2015, 38, 3704-3711.	2.5	4
53	Preparation of nanosized Fluticasone Propionate nasal spray with improved stability and uniformity. Chemical Industry and Chemical Engineering Quarterly, 2015, 21, 457-464.	0.7	2
54	Improvement on solubility of fluticasone propionate with cyclodextrins by mechanochemical activation. Pakistan Journal of Pharmaceutical Sciences, 2015, 28, 799-806.	0.2	0

#	Article	IF	Citations
55	Homogenate extraction of gardenia yellow pigment from Gardenia Jasminoides Ellis fruit using response surface methodology. Journal of Food Science and Technology, 2014, 51, 1575-1581.	2.8	33
56	A Rapid UPLC-PAD Fingerprint Analysis of Chrysanthemum morifolium Ramat Combined with Chemometrics Methods. Food Analytical Methods, 2014, 7, 197-204.	2.6	20
57	Partial characterization, antioxidant and antitumor activities of polysaccharides from Philomycusbilineatus. International Journal of Biological Macromolecules, 2014, 65, 573-580.	7.5	25
58	Continuous flow reactor for Balz–Schiemann reaction: a new procedure for the preparation of aromatic fluorides. Tetrahedron Letters, 2013, 54, 1261-1263.	1.4	53
59	Synthesis and Antitumor Activity of Novel Coumarin Derivatives via a Threeâ€component Reaction in Water. Chinese Journal of Chemistry, 2013, 31, 507-514.	4.9	57
60	Synthesis of Quinolines by <i>N</i> -Deformylation and Aromatization via Solvent-Free, High-Speed Ball Milling. Synthetic Communications, 2013, 43, 361-374.	2.1	16
61	Separation of avermectin components from Streptomyces avemitilis extraction using high-speed counter-current chromatography. Chemical Industry and Chemical Engineering Quarterly, 2013, 19, 563-571.	0.7	1
62	Highly Efficient CN Bond Forming Reactions in Water Catalyzed by Copper(I) Iodide with Calix[4]arene Supported Amino Acid Ionic Liquid. Chinese Journal of Chemistry, 2012, 30, 2394-2400.	4.9	15
63	A Continuous Kilogram-Scale Process for the Manufacture of o-Difluorobenzene. Organic Process Research and Development, 2012, 16, 1669-1672.	2.7	62
64	Palladium atalyzed Aerobic Oxidative Coupling of Acyl Chlorides with Arylboronic Acids. Advanced Synthesis and Catalysis, 2012, 354, 2117-2122.	4.3	23
65	A Novel Method for Oneâ€pot Synthesis of Furo[3,2â€ <i>c</i>]coumarin Derivatives from 4â€Hydroxycoumarin and Arylglyoxal under Microwave Irradiation. Chinese Journal of Chemistry, 2012, 30, 1845-1850.	4.9	4
66	Solvent-Free Cross-Dehydrogenative Coupling Reactions under High Speed Ball-Milling Conditions Applied to the Synthesis of Functionalized Tetrahydroisoquinolines. Journal of Organic Chemistry, 2011, 76, 9144-9150.	3.2	151
67	Basic Ionic Liquid as Catalyst for the Efficient and Green Synthesis of 2-Amino-3-nitrobenzonitriles in Ethanol. Synthetic Communications, 2011, 41, 1410-1420.	2.1	11
68	Efficient One-Pot Condensation of Î ² -Naphthol, Aldehydes, and Cyclic 1,3-Dicarbonyl Compounds Catalyzed by p-TSA Under Solvent-Free and Sonication Conditions. Synthetic Communications, 2010, 40, 1029-1039.	2.1	12
69	Recent Progress in the Use of Vilsmeier-Type Reagents. Organic Preparations and Procedures International, 2010, 42, 503-555.	1.3	51
70	Mild and Efficient Method for Synthesis of Eaminones Using Ytterbium Triflate as Catalyst. Synthetic Communications, 2010, 40, 2506-2512.	2.1	6
71	A Novel and Efficient Reaction of Imidazolidin-2-one and $\langle i \rangle N \langle i \rangle$ -Acylbenzotriazoles: A Facile Synthesis of 1-Acylimidazolidin-2-one. Synthetic Communications, 2010, 40, 3669-3677.	2.1	11
72	Synthesis and Biological Activities of New Chiral Imidazolinone Derivatives. Phosphorus, Sulfur and Silicon and the Related Elements, 2009, 185, 117-128.	1.6	4

#	Article	IF	CITATIONS
73	Mechanically activated synthesis of $1,3,5$ -triaryl-2-pyrazolines by high speed ball milling. Green Chemistry, 2009, $11,163$.	9.0	58
74	Intramolecular Cyclization of 2′-Aminochalcones by Halomethyleniminium Salts Derived from BTC/DMF. Organic Preparations and Procedures International, 2009, 41, 156-161.	1.3	3
75	Approach to Synthesis of \hat{l}^2 -Enamino Ketones and Pyrroles Catalyzed by Gallium(III) Triflate Under Solvent-Free Conditions. Synthetic Communications, 2009, 39, 4180-4198.	2.1	24
76	Mechanically Activated Solid-State Synthesis of Flavones by High-Speed Ball Milling. Synthetic Communications, 2009, 39, 4199-4211.	2.1	25
77	Recent Developments in the Use ofbis-(Trichloromethyl) Carbonate in Synthesis. Organic Preparations and Procedures International, 2009, 41, 93-141.	1.3	15
78	A facile synthesis of flavones catalysed by gallium(III) triflate. Journal of Chemical Research, 2009, 2009, 27-29.	1.3	9
79	A convenient synthesis of 2â€(1 <i>H</i> â€1,2,4â€triazolâ€1â€yl)â€2 <i>H</i> â€1,4â€benzothiazine derivatives. Chemistry, 2008, 19, 332-336.	Heteroato 0.7	om 5
80	Dramatically Accelerated Addition Under Solvent-Free Conditions: An Efficient Synthesis of (⟨i⟩E⟨/i⟩)-1,2,4-Triazole-Substituted Alkenes from Baylisâ€"Hillman Acetates. Synthetic Communications, 2008, 38, 3291-3302.	2.1	8
81	Gallium Trichloride–Promoted Highly Regioselective Ring Opening of Epoxides with NH4SCN and NaN3in Water. Synthetic Communications, 2008, 38, 1855-1865.	2.1	11
82	Unexpectedly High Activity of Zn(OTf)2·Â6H2O in Catalytic Friedel–Crafts Acylation Reaction. Synthetic Communications, 2008, 38, 255-264.	2.1	23
83	Europium Triflate–Catalyzed Oneâ€Pot Synthesis of 2,4,5â€Trisubstitutedâ€1Hâ€imidazoles via a Threeâ€component Condensation. Synthetic Communications, 2007, 37, 3301-3309.	2.1	37
84	Y(OTf)3â€Catalyzed, Oneâ€Pot Synthesis of 1,2,4â€Oxadiazole Derivatives. Synthetic Communications, 2007, 37 4439-4452.	⁷ ,2.1	9
85	Chemoselective Synthesis of Asymmetrical Carbonate from Alcohol and Dimethyl Carbonate Catalyzed by Ytterbium(III) Triflate. Synthetic Communications, 2007, 37, 645-651.	2.1	7
86	First Catalytic and Green Synthesis of Aryl-(Z)-vinyl Chlorides and Its Plausible Additionâ ⁻ 'Elimination Mechanism. Organic Letters, 2007, 9, 993-996.	4.6	53
87	A General and Efficient Method for the Selective Synthesis of \hat{l}^2 -Hydroxy Sulfides and \hat{l}^2 -Hydroxy Sulfoxides Catalyzed by Gallium(III) Triflate. Journal of Organic Chemistry, 2007, 72, 4524-4527.	3.2	72
88	Eco-friendly synthesis of 2,3-dihydroquinazolin-4(1H)-ones in ionic liquids or ionic liquid–water without additional catalyst. Green Chemistry, 2007, 9, 972.	9.0	224
89	Erlenmeyer Synthesis for Azlactones Catalyzed by Ytterbium(III) Triflate under Solventâ€Free Conditions. Synthetic Communications, 2006, 36, 3447-3453.	2.1	29
90	Ytterbium(III) Triflate–Catalyzed Stereoselective Synthesis of Î²â€Łactams via [2+2] Cyclocondensation in Ionic Liquid. Synthetic Communications, 2006, 36, 3167-3174.	2.1	12

#	Article	IF	CITATIONS
91	Mild and Convenient Synthesis of 1,2â€Dihydroquinolines from Anilines and Acetone Catalyzed by Ytterbium(III) Triflate in Ionic Liquids. Synthetic Communications, 2006, 36, 3065-3073.	2.1	11
92	Copper Triflate–Catalyzed Crossâ€Aldol Condensation: A Facile Synthesis of α,α′â€Bis(Substituted) Tj ETÇ	q0 <u>0</u> 0 rgB	T <u> O</u> verlock
93	RECENT ADVANCES IN THE CHEMISTRY OF TRICHLOROMETHYL CHLOROFORMATE ANDbis-(TRICHLOROMETHYL) CARBONATE. Organic Preparations and Procedures International, 2004, 36, 499-547.	1.3	54
94	The preparation of 3-substituted 1-chlorocarbonyl-imidazolidin-2-ones using bis(trichloromethyl) carbonate. Journal of Chemical Research, 2000, 2000, 440-441.	1.3	6
95	A NOVEL SYNTHESIS OF 3-SUBSTITUTED MDAZOLIDIN-2-ONE-1-CARBONYL CHLORIDES. Organic Preparations and Procedures International, 2000, 32, 498-501.	1.3	2
96	Improving the reaction efficiency of condensation amidation of piperazine with benzoic acid based on kinetics study in microreactors. Journal of Flow Chemistry, 0 , , 1 .	1.9	2
97	Metal-free catalyzed aerobic oxidation of 2-nitro-4-methylsulfone toluene to 2-nitro-4-methylsulfonylbenzoic acid using a continuous-flow reactor. Journal of Flow Chemistry, 0, , 1.	1.9	1