Federico Dajas-Bailador

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3454579/publications.pdf Version: 2024-02-01

	623574	677027
1,472	14	22
citations	h-index	g-index
22	22	2335
docs citations	times ranked	citing authors
	1,472 citations 22 docs citations	1,47214citationsh-index2222docs citations12

FEDERICO DAIAS-BAILADOR

#	Article	IF	CITATIONS
1	Isolation and characterization of neurotoxic astrocytes derived from adult triple transgenic Alzheimer's disease mice. Neurochemistry International, 2022, 159, 105403.	1.9	3
2	Functional Genomics of Axons and Synapses to Understand Neurodegenerative Diseases. Frontiers in Cellular Neuroscience, 2021, 15, 686722.	1.8	9
3	Vinculin is required for neuronal mechanosensing but not for axon outgrowth. Experimental Cell Research, 2021, 407, 112805.	1.2	6
4	Distinct small non-coding RNA landscape in the axons and released extracellular vesicles of developing primary cortical neurons and the axoplasm of adult nerves. RNA Biology, 2021, 18, 832-855.	1.5	8
5	Mitochondrial impairment activates the Wallerian pathway through depletion of NMNAT2 leading to SARM1-dependent axon degeneration. Neurobiology of Disease, 2020, 134, 104678.	2.1	87
6	PDCD4 regulates axonal growth by translational repression of neurite growth-related genes and is modulated during nerve injury responses. Rna, 2020, 26, 1637-1653.	1.6	14
7	Spatiotemporal regulation of GSK3β levels by miRNA-26a controls axon development in cortical neurons. Development (Cambridge), 2020, 147, .	1.2	19
8	Biological Significance of microRNA Biomarkers in ALS—Innocent Bystanders or Disease Culprits?. Frontiers in Neurology, 2019, 10, 578.	1.1	19
9	Study of miRNA Function in the Developing Axons of Mouse Cortical Neurons: Use of Compartmentalized Microfluidic Chambers and In Utero Electroporation. Neuromethods, 2016, , 59-71.	0.2	1
10	<i>Drosophila</i> CLIP-190 and mammalian CLIP-170 display reduced microtubule plus end association in the nervous system. Molecular Biology of the Cell, 2015, 26, 1491-1508.	0.9	51
11	Impact of voluntary exercise and housing conditions on hippocampal glucocorticoid receptor, miR-124 and anxiety. Molecular Brain, 2015, 8, 40.	1.3	57
12	Regulation of axon growth by the JIP1-AKT axis. Journal of Cell Science, 2014, 127, 230-9.	1.2	22
13	Caspase-8-mediated PAR-4 cleavage is required for TNFα-induced apoptosis. Oncotarget, 2014, 5, 2988-2998.	0.8	30
14	microRNA-9 regulates axon extension and branching by targeting Map1b in mouse cortical neurons. Nature Neuroscience, 2012, 15, 697-699.	7.1	250
15	Characterisation of a new regulator of BDNF signalling, Sprouty3, involved in axonal morphogenesis in vivo. Development (Cambridge), 2010, 137, 4005-4015.	1.2	36
16	Mouse ACF7 and <i>Drosophila</i> Short stop modulate filopodia formation and microtubule organisation during neuronal growth. Journal of Cell Science, 2009, 122, 2534-2542.	1.2	119
17	The JIP1 Scaffold Protein Regulates Axonal Development in Cortical Neurons. Current Biology, 2008, 18, 221-226.	1.8	92
18	Targeted Deletion of the Mitogen-Activated Protein Kinase Kinase 4 Gene in the Nervous System Causes Severe Brain Developmental Defects and Premature Death. Molecular and Cellular Biology, 2007, 27, 7935-7946.	1.1	60

#	Article	IF	CITATIONS
19	Cellular responses to nicotinic receptor activation are decreased after prolonged exposure to galantamine in human neuroblastoma cells. British Journal of Pharmacology, 2005, 145, 1084-1092.	2.7	11
20	Nicotinic acetylcholine receptors and the regulation of neuronal signalling. Trends in Pharmacological Sciences, 2004, 25, 317-324.	4.0	546
21	Effects of α-erabutoxin, α-bungarotoxin, α-cobratoxin and fasciculin on the nicotine-evoked release of dopamine in the rat striatum in vivo. Neurochemistry International, 1998, 33, 307-312.	1.9	18
22	Acetylcholinesterase inhibitors block acetylcholine-evoked release of dopamine in rat striatum, in vivo. Brain Research, 1996, 722, 12-18.	1.1	14