Maya Shelly

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3454130/publications.pdf

Version: 2024-02-01

16 papers	1,504 citations	12 h-index	940533 16 g-index
16	16	16	2054
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Semaphorin3A/PlexinA3 association with the Scribble scaffold for cGMP increase is required for apical dendrite development. Cell Reports, 2022, 38, 110483.	6.4	3
2	A Localized Scaffold for cGMP Increase Is Required for Apical Dendrite Development. Cell Reports, 2020, 31, 107519.	6.4	6
3	Repositioning of Somatic Golgi Apparatus Is Essential for the Dendritic Establishment of Adult-Born Hippocampal Neurons. Journal of Neuroscience, 2018, 38, 631-647.	3.6	34
4	Micellar nanocomplexes for biomagnetic delivery of intracellular proteins to dictate axon formation during neuronal development. Biomaterials, 2017, 112, 176-191.	11.4	11
5	Photolithography-Based Substrate Microfabrication for Patterning Semaphorin 3A to Study Neuronal Development. Methods in Molecular Biology, 2017, 1493, 321-343.	0.9	14
6	Non-hyperpolarizing GABAB receptor activation regulates neuronal migration and neurite growth and specification by cAMP/LKB1. Nature Communications, 2013, 4, 1800.	12.8	49
7	Centrosome positioning and primary cilia assembly orchestrate neuronal development. Frontiers in Biology, 2012, 7, 412-427.	0.7	7
8	Phosphorylation of E3 Ligase Smurf1 Switches Its Substrate Preference in Support of Axon Development. Neuron, 2011, 69, 231-243.	8.1	132
9	Semaphorin3A Regulates Neuronal Polarization by Suppressing Axon Formation and Promoting Dendrite Growth. Neuron, 2011, 71, 433-446.	8.1	182
10	Role of LKB1â€SAD/MARK pathway in neuronal polarization. Developmental Neurobiology, 2011, 71, 508-527.	3.0	52
11	Local and Long-Range Reciprocal Regulation of cAMP and cGMP in Axon/Dendrite Formation. Science, 2010, 327, 547-552.	12.6	229
12	LKB1/STRAD Promotes Axon Initiation During Neuronal Polarization. Cell, 2007, 129, 565-577.	28.9	320
13	Polar Expression of ErbB-2/HER2 in Epithelia. Developmental Cell, 2003, 5, 475-486.	7.0	63
14	Epiregulin Is a Potent Pan-ErbB Ligand That Preferentially Activates Heterodimeric Receptor Complexes. Journal of Biological Chemistry, 1998, 273, 10496-10505.	3.4	141
15	ErbB Tyrosine Kinases and the Two Neuregulin Families Constitute a Ligand-Receptor Network. Molecular and Cellular Biology, 1998, 18, 6090-6101.	2.3	129
16	Neu Differentiation Factor/Neuregulin Isoforms Activate Distinct Receptor Combinations. Journal of Biological Chemistry, 1996, 271, 19029-19032.	3.4	132