Marat Agliullin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3454013/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Template-free synthesis of high degree crystallinity zeolite Y with micro–meso–macroporous structure. RSC Advances, 2017, 7, 32581-32590.	3.6	50
2	Sol-gel synthesis of mesoporous aluminosilicates with a narrow pore size distribution and catalytic activity thereof in the oligomerization of dec-1-ene. Microporous and Mesoporous Materials, 2016, 230, 118-127.	4.4	32
3	Template-free sol-gel synthesis of catalytically active mesoporous aluminosilicates. Kinetics and Catalysis, 2015, 56, 501-508.	1.0	17
4	Selective Crystallization of Aluminophosphate Molecular Sieves with an AEL Structure. Catalysis in Industry, 2019, 11, 1-6.	0.7	14
5	New method of synthesis of hierarchical mordenite of high crystallinity and its application in hydroizomerization of benzene-n-heptane mixture. Journal of Porous Materials, 2019, 26, 995-1004.	2.6	13
6	Synthesis of Fine-Crystalline SAPO-11 Zeolites and Analysis of Their Physicochemical and Catalytic Properties. Kinetics and Catalysis, 2020, 61, 654-662.	1.0	12
7	for Hydroisomerization of C16+ n-Paraffins. Part 2: Current State of Research on Methods to Control the Crystal Morphology, Dispersion, Acidic Properties, Secondary Porous Structure, and Catalytic Properties of SAPO-11 and SAPO-41 in Hydroisomerization of C16+ n-Paraffins (A Review). Petroleum	1.4	12
8	High-Crystallinity Granular Zeolites of LTA, FAU, and MOR Structural Types with Hierarchical Porous Structure: Synthesis and Properties. Petroleum Chemistry, 2019, 59, 297-309.	1.4	11
9	Crystallization of AlPO4-11 Aluminophosphate from Various Aluminum Sources. Petroleum Chemistry, 2019, 59, 349-353.	1.4	10
10	Silicoaluminophosphate Molecular Sieves SAPO-11 and SAPO-41: Synthesis, Properties, and Applications for Hydroisomerization of C16+ n-Paraffins. Part 1: Current State of Research on SAPO-11 and SAPO-41 Synthesis (A Review). Petroleum Chemistry, 2021, 61, 836-851.	1.4	10
11	Acid properties and morphology of SAPO-11 molecular sieve controled by silica source. Microporous and Mesoporous Materials, 2022, 338, 111962.	4.4	10
12	Key Stages in the Formation of AlPO4-11 via the Crystallization of a Boehmite-Based Aluminophosphate Gel. Catalysis in Industry, 2019, 11, 87-94.	0.7	8
13	Synthesis of carboxylic acid esters in the presence of micro- and mesoporous aluminosilicates. Russian Journal of Applied Chemistry, 2014, 87, 773-779.	0.5	7
14	Two-step sol–gel synthesis of mesoporous aluminosilicates: highly efficient catalysts for the preparation of 3,5-dialkylpyridines. Applied Petrochemical Research, 2018, 8, 141-151.	1.3	7
15	Effect of the Aging Temperature of Gel on the Synthesis and Properties of the Silicoaluminophosphate Molecular Sieve SAPO-11. Catalysis in Industry, 2020, 12, 89-94.	0.7	7
16	Relation between Morphology and Porous Structure of SAPO-11 Molecular Sieves and Chemical and Phase Composition of Silicoaluminophosphate Gels. Gels, 2022, 8, 142.	4.5	7
17	Aluminosilicates with different pores structure in the synthesis of 2,2,4-trimethyl-1,2-dihydroquinoline and N-phenyl-2-propanimine. Russian Chemical Bulletin, 2017, 66, 2115-2121.	1.5	6
18	Crystalline and amorphous aluminosilicates with different pore structures for the synthesis of pyridines. Journal of Chemical Research, 2017, 41, 253-261.	1.3	6

Marat Agliullin

#	Article	IF	CITATIONS
19	General Features of Catalytic Upgrading of Karmalskoe Heavy Oil in the Presence of Amorphous Aluminosilicates. Petroleum Chemistry, 2020, 60, 384-391.	1.4	6
20	Sol-gel synthesis of micro-mesoporous aluminosilicates using oligomeric esters of orthosilicic acid. Catalysis in Industry, 2014, 6, 260-265.	0.7	5
21	Formation of Intermediate Phases during Crystallization of Aluminophosphate and Silicoaluminophosphate Sieves with the AEL Structure. Petroleum Chemistry, 2020, 60, 451-458.	1.4	5
22	Selective oxidation of 4-tert-butylphenol by hydrogen peroxide in the presence of titanosilicates. Applied Petrochemical Research, 2016, 6, 419-426.	1.3	4
23	Oligomerization of Unsaturated Compounds in the Presence of Amorphous Mesoporous Aluminosilicates. Petroleum Chemistry, 2019, 59, 682-690.	1.4	4
24	Bifunctional Cobalt-Containing Catalytic Systems Based on SAPO-11 Molecular Sieves in Fischer–Tropsch Synthesis of Fuels. Petroleum Chemistry, 2021, 61, 378-387.	1.4	4
25	Selective Crystallization of AlPO4-41 Molecular Sieve in the Presence of Diethylamine. Petroleum Chemistry, 2020, 60, 890-894.	1.4	3
26	Influence of the formation conditions of aluminophosphate gels on the morphology and pore structure of molecular sieve AlPO4-11. Russian Chemical Bulletin, 2021, 70, 47-55.	1.5	3
27	Nitration of 1,3,3-trimethyl-1-phenylindane on mesoporous aluminosilicates. Russian Chemical Bulletin, 2015, 64, 852-858.	1.5	2
28	Mesoporous Aluminosilicates in the Synthesis of N-Heterocyclic Compounds. Kinetics and Catalysis, 2019, 60, 733-743.	1.0	2
29	Modification of the Physicochemical Properties of High-Crystallinity Granular Y Zeolite by Steam Heating and Acid Treatment. Petroleum Chemistry, 2021, 61, 284-291.	1.4	2
30	State of the art in the industrial production and application of zeolite-containing adsorbents and catalysts in Russia. Kataliz V Promyshlennosti, 2021, 21, 297-307.	0.3	2
31	State-of-the-Art in the Industrial Production and Use of Zeolite-Containing Adsorbents and Catalysts in Russia. Catalysis in Industry, 2022, 14, 56-65.	0.7	2
32	Crystallization of a Pelletized High-Crystallinity SAPO-11 Molecular Sieve with a Hierarchical Pore Structure. Catalysis in Industry, 2020, 12, 273-279.	0.7	1
33	The Influence of Temperature of Gel Ageing on Synthesis and Properties of the Silicoaluminophosphate Molecular Sieve SAPO-11. Kataliz V Promyshlennosti, 2019, 19, 414-420.	0.3	1
34	Nontemplate sol–gel synthesis of catalytically active mesoporous titanosilicates. Catalysis in Industry, 2016, 8, 287-292.	0.7	0
35	A Catalyst System Based on Copper(II) Bromide Supported on Zeolite HY with a Hierarchical Pore Structure in Benzyl Butyl Ether Synthesis. Petroleum Chemistry, 2020, 60, 937-941.	1.4	0
36	Intermediate Aluminophosphates as a Tool of Control over the Morphology and Secondary Porous Structure of AlPO4-11. Petroleum Chemistry, 2021, 61, 825-835.	1.4	0

#	Article	IF	CITATIONS
37	Influence of the Nature of the Al Source on the Properties of the Initial Reaction Gels for Crystallization of Molecular Sieve AlPO4-11. Petroleum Chemistry, 2022, 62, 291-300.	1.4	0