Manuel J S Monte

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3453718/publications.pdf

Version: 2024-02-01

236925 276875 2,310 101 25 41 citations h-index g-index papers 106 106 106 884 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Thermodynamic Stability of Fenclorim and Clopyralid. Molecules, 2022, 27, 39.	3.8	1
2	Volatility and thermodynamic stability of vanillin. Journal of Chemical Thermodynamics, 2019, 128, 45-54.	2.0	29
3	Thermodynamic Properties of Moldy-Musty Contaminants of Wine. Journal of Chemical & Description of Engineering Data, 2019, 64, 4741-4753.	1.9	5
4	Vapour pressures and thermodynamic stability of the three aminophenol isomers. Journal of Chemical Thermodynamics, 2019, 129, 130-137.	2.0	6
5	Thermodynamic properties of phase transitions of phenyl derivatives of maleic anhydride and oxazole. Journal of Chemical Thermodynamics, 2019, 131, 489-494.	2.0	3
6	Volatility and chemical stability of chromium, molybdenum, and tungsten hexacarbonyls. Journal of Thermal Analysis and Calorimetry, 2018, 132, 1201-1211.	3.6	7
7	Vapour pressures, enthalpies and Gibbs energies of formation and sublimation of fluorene-2-carboxaldehyde. Journal of Chemical Thermodynamics, 2017, 111, 65-71.	2.0	6
8	Vapour pressures and phase transition properties of four substituted acetophenones. Journal of Chemical Thermodynamics, 2017, 107, 42-50.	2.0	12
9	Estimations of the thermodynamic properties of halogenated benzenes as they relate to their environment mobility. Chemosphere, 2017, 189, 590-598.	8.2	9
10	Vapor Pressures and Gibbs Energies of Formation of the Three Hydroxybenzaldehydes. Journal of Chemical & Chemi	1.9	9
11	Study on the volatility of halogenated fluorenes. Chemosphere, 2016, 157, 25-32.	8.2	7
12	Thermodynamic properties of 2,7-di- tert -butylfluorene $\hat{a}\in$ An experimental and computational study. Journal of Chemical Thermodynamics, 2016, 101, 115-122.	2.0	7
13	Vapor pressures, thermodynamic stability, and fluorescence properties of three 2,6-alkyl naphthalenes. Chemosphere, 2016, 146, 173-181.	8.2	8
14	Vapor Pressures of Four Methyl Esters of Substituted Benzoic Acids. The Intermolecular Hydrogen Bond OH···O. Journal of Chemical & Engineering Data, 2016, 61, 1012-1020.	1.9	16
15	The influence of the halogen atoms and acetyl group on vapour pressures and related properties of the p-haloacetophenones. Journal of Chemical Thermodynamics, 2016, 92, 118-125.	2.0	16
16	Thermodynamic properties of bromine fluorene derivatives: An experimental and computational study. Journal of Chemical Thermodynamics, 2015, 89, 134-141.	2.0	15
17	Thermodynamic properties of sublimation of the ortho and meta isomers of acetoxy and acetamido benzoic acids. Journal of Chemical Thermodynamics, 2015, 86, 6-12.	2.0	12
18	Experimental and computational thermodynamics of pyrene and 1-pyrenecarboxaldehyde and their photophysical properties. Journal of Chemical Thermodynamics, 2015, 90, 282-293.	2.0	22

#	Article	IF	CITATIONS
19	Prediction of enthalpy and standard Gibbs energy of vaporization of haloaromatics from atomic properties. Chemosphere, 2015, 138, 478-485.	8.2	8
20	Thermodynamic study of nicotinamide, N-methylnicotinamide and N,N-dimethylnicotinamide: Vapour pressures, phase diagrams, and hydrogen bonds. Journal of Chemical Thermodynamics, 2015, 82, 108-115.	2.0	22
21	The life and career of Manuel Ribeiro da Silva. Journal of Chemical Thermodynamics, 2014, 73, 1-2.	2.0	O
22	Experimental and computational study of the thermodynamic properties of 2-nitrofluorene and 2-aminofluorene. Journal of Chemical Thermodynamics, 2014, 76, 56-63.	2.0	9
23	Thermodynamic study of 2-aminothiazole and 2-aminobenzothiazole: Experimental and computational approaches. Journal of Chemical Thermodynamics, 2014, 74, 67-77.	2.0	14
24	The thermodynamic stability of the three isomers of methoxybenzamide: An experimental and computational study. Journal of Chemical Thermodynamics, 2014, 73, 12-22.	2.0	12
25	Thermodynamic properties of the methyl esters of p-hydroxy and p-methoxy benzoic acids. Journal of Chemical Thermodynamics, 2014, 78, 43-57.	2.0	23
26	Reprint of: Crystalline and liquid vapour pressures of the four p-monohalophenols: A thermodynamic study of their phase transitions. Journal of Chemical Thermodynamics, 2014, 73, 274-282.	2.0	1
27	Vapour pressures of 1-methyl derivatives of benzimidazole, pyrazole and indole. The energy of the intermolecular hydrogen bond NHâ√N. Journal of Chemical Thermodynamics, 2014, 77, 46-53.	2.0	21
28	A new approach for the estimation of sublimation enthalpies and vapor pressures of crystalline benzene derivatives. Structural Chemistry, 2013, 24, 2001-2016.	2.0	27
29	A brief review of the methods used to evaluate vapour pressures and sublimation enthalpies. Structural Chemistry, 2013, 24, 1993-1997.	2.0	9
30	Experimental and computational thermodynamic study of ortho- meta- and para-aminobenzamide. Journal of Chemical Thermodynamics, 2013, 59, 222-232.	2.0	24
31	A combined experimental and computational thermodynamic study of fluorene-9-methanol and fluorene-9-carboxylic acid. Journal of Chemical Thermodynamics, 2013, 62, 222-230.	2.0	10
32	Crystalline and liquid vapour pressures of the four p-monohalophenols: A thermodynamic study of their phase transitions. Journal of Chemical Thermodynamics, 2013, 65, 150-158.	2.0	18
33	Experimental and computational study of the energetics of hydantoin and 2-thiohydantoin. Journal of Chemical Thermodynamics, 2013, 58, 158-165.	2.0	17
34	The influence of the halogen size in the volatility and melting of methyl p-halobenzoic esters and of their parent acids. Journal of Chemical Thermodynamics, 2013, 57, 160-168.	2.0	28
35	Energetic Study Applied to the Knowledge of the Structural and Electronic Properties of Monofluorobenzonitriles. Journal of Organic Chemistry, 2012, 77, 4312-4322.	3.2	18
36	Evidence of an odd–even effect on the thermodynamic parameters of odd fluorotelomer alcohols. Journal of Chemical Thermodynamics, 2012, 54, 171-178.	2.0	17

#	Article	IF	CITATIONS
37	Experimental and Computational Study of the Thermodynamic Properties of 9-Fluorenone and 9-Fluorenol. Journal of Chemical & Engineering Data, 2012, 57, 2486-2496.	1.9	20
38	Thermodynamic study of phase transitions of imidazoles and 1-methylimidazoles. Journal of Chemical Thermodynamics, 2012, 44, 163-168.	2.0	21
39	Fluorene: An extended experimental thermodynamic study. Journal of Chemical Thermodynamics, 2012, 45, 53-58.	2.0	36
40	Experimental and computational thermodynamic study of ortho-, meta-, and para-methylbenzamide. Journal of Chemical Thermodynamics, 2012, 47, 81-89.	2.0	17
41	Thermodynamic properties of fluoranthene: An experimental and computational study. Journal of Chemical Thermodynamics, 2012, 49, 159-164.	2.0	27
42	Thermodynamic study of phase transitions in methyl esters of ortho- meta- and para-aminobenzoic acids. Journal of Chemical Thermodynamics, 2012, 53, 100-107.	2.0	27
43	Vapor Pressures and Phase Diagrams of Two Methyl Esters of Substituted Benzoic Acids. Journal of Chemical & Ch	1.9	21
44	Thermodynamic study on the sublimation of diphenyl and triphenyl substituted acetic and propanoic acids. Journal of Thermal Analysis and Calorimetry, 2011, 106, 913-920.	3.6	2
45	Vapour pressures, enthalpies and entropies of sublimation of para substituted benzoic acids. Journal of Thermal Analysis and Calorimetry, 2010, 100, 465-474.	3.6	29
46	Thermodynamic study on hydroxybenzaldehyde derivatives: 3- and 4-Hydroxybenzaldehyde isomers and 3,5-di-tert-butyl-2-hydroxybenzaldehyde. Journal of Chemical Thermodynamics, 2010, 42, 472-477.	2.0	17
47	A Calorimetric and Computational Study of Aminomethoxybenzoic Acids. Journal of Physical Chemistry B, 2010, 114, 11570-11575.	2.6	7
48	Thermodynamic Study of 4- <i>n</i> -Alkyloxybenzoic Acids. Journal of Chemical & Engineering Data, 2010, 55, 2238-2245.	1.9	21
49	Experimental and Computational Thermodynamic Study of Three Monofluoronitrobenzene Isomers. Journal of Physical Chemistry B, 2010, 114, 7909-7919.	2.6	21
50	Thermodynamic Study of Benzamide, <i>N</i> -Methylbenzamide, and <i>N</i> , <i>N</i> -Dimethylbenzamide: Vapor Pressures, Phase Diagrams, and Hydrogen Bond Enthalpy. Journal of Chemical & Data, 2010, 55, 3507-3512.	1.9	44
51	A Combined Experimental and Computational Thermodynamic Study of Difluoronitrobenzene Isomers. Journal of Physical Chemistry B, 2010, 114, 12914-12925.	2.6	9
52	Vapor Pressures and Enthalpies of Combustion of the Dihydroxybenzoic Acid Isomers. Journal of Chemical & Chemi	1.9	14
53	Thermodynamic Study on the Sublimation of Anthracene-Like Compounds. Journal of Chemical & Engineering Data, 2010, 55, 5264-5270.	1.9	22
54	Thermodynamic Study of the Three Fluorobenzamides: Vapor Pressures, Phase Diagrams, and Hydrogen Bonds. Journal of Chemical & Engineering Data, 2010, 55, 5230-5236.	1.9	23

#	Article	IF	CITATIONS
55	Thermodynamic Study on the Sublimation of Five Aminomethoxybenzoic Acids. Journal of Chemical & Engineering Data, 2010, 55, 419-423.	1.9	57
56	Energetic Studies and Phase Diagram of Thioxanthene. Journal of Physical Chemistry A, 2009, 113, 12988-12994.	2.5	36
57	Vapor Pressures of Solid and Liquid Xanthene and Phenoxathiin from Effusion and Static Studies. Journal of Chemical & Deta, 2008, 53, 1922-1926.	1.9	7
58	Thermodynamic Properties of Three Pyridine Carboxylic Acid Methyl Ester Isomers. Journal of Chemical & Engineering Data, 2007, 52, 580-585.	1.9	11
59	Calorimetric and Computational Study of Indanones. Journal of Physical Chemistry A, 2007, 111, 11153-11159.	2.5	20
60	Thermochemical study of some chloro and bromo alkyl substituted phthalimides: Structural–energetic correlations. Journal of Chemical Thermodynamics, 2007, 39, 1363-1371.	2.0	5
61	New Static Apparatus and Vapor Pressure of Reference Materials:  Naphthalene, Benzoic Acid, Benzophenone, and Ferrocene. Journal of Chemical & Engineering Data, 2006, 51, 757-766.	1.9	158
62	The design, construction, and testing of a new Knudsen effusion apparatus. Journal of Chemical Thermodynamics, 2006, 38, 778-787.	2.0	227
63	Thermochemical studies of phthalimide and two N-alkylsubstituted phthalimides (ALKYL=ETHYL AND) Tj ETQq1	1 0,7,8431	4 rgBT /Overl
64	Thermodynamic study of the sublimation of six halobenzoic acids. Journal of Chemical Thermodynamics, 2005, 37, 271-279.	2.0	30
65	Vapor Pressures and Phase Changes Enthalpy and Gibbs Energy of Three Crystalline Monomethyl Benzenedicarboxylates. Journal of Chemical & Engineering Data, 2005, 50, 2101-2105.	1.9	11
66	Energetics of the Nâ^'O Bonds in 2-Hydroxyphenazine-di-N-oxide. Journal of Physical Chemistry B, 2005, 109, 16188-16195.	2.6	16
67	Thermodynamic study of the sublimation of eight 4-n-alkylbenzoic acids. Journal of Chemical Thermodynamics, 2004, 36, 385-392.	2.0	40
68	Thermodynamic study of sesamol, piperonyl alcohol, piperonylic acid and homopiperonylic acid: a combined experimental and theoretical investigation. Organic and Biomolecular Chemistry, 2004, 2, 908.	2.8	17
69	Standard molar enthalpies of combustion of the three trans -methoxycinnamic acids. Journal of Chemical Thermodynamics, 2002, 34, 499-509.	2.0	9
70	Thermodynamic Study on the Sublimation of 2-Phenylacetic, 4-Phenylbutyric, and 5-Phenylvaleric Acid. Journal of Chemical & Description (2001), 46, 1601-1604.	1.9	16
71	Thermodynamic study on the sublimation of succinic acid and of methyl- and dimethyl-substituted succinic and glutaric acids. Journal of Chemical Thermodynamics, 2001, 33, 23-31.	2.0	42
72	Thermodynamic study on the sublimation of six methylnitrobenzoic acids. Journal of Chemical Thermodynamics, 2001, 33, 103-112.	2.0	18

#	Article	IF	Citations
73	Thermodynamic study of the sublimation of crystalline tris(1,1,1-trifluoro-2,4-pentanedionate)ruthenium(III) and tris(1,1,1,5,5,5-hexafluoro-2,4-pentanedionate)ruthenium(III). Journal of Chemical Thermodynamics, 2001, 33, 369-376.	2.0	6
74	Thermodynamic study on the sublimation of 1,2-diphenylethane and of 3-phenylpropiolic acid. Journal of Chemical Thermodynamics, 2001, 33, 849-857.	2.0	7
75	Thermodynamic study on the sublimation of 3-phenylpropionic acid and of three methoxy-substituted 3-phenylpropionic acids. Journal of Chemical Thermodynamics, 2001, 33, 837-847.	2.0	15
76	Thermodynamic study of the sublimation of six aminomethylbenzoic acids. Journal of Chemical Thermodynamics, 2001, 33, 745-754.	2.0	12
77	Standard molar enthalpies of combustion of five trans -dimethoxycinnamic acids. Journal of Chemical Thermodynamics, 2001, 33, 899-903.	2.0	5
78	Thermodynamic study on the sublimation of the three iodobenzoic acids and of 2-fluoro- and 3-fluorobenzoic acids. Journal of Chemical Thermodynamics, 2000, 32, 1727-1735.	2.0	24
79	Thermodynamic Study on the Sublimation of Six Substituted Quinoxalines. Journal of Chemical & Engineering Data, 2000, 45, 1088-1092.	1.9	15
80	Standard Enthalpies, Entropies, and Gibbs Functions of Sublimation of Four Alkyl-Substituted Malonic Acids. Journal of Chemical & Engineering Data, 2000, 45, 756-759.	1.9	13
81	Enthalpies of combustion, vapour pressures, and enthalpies of sublimation of three methoxy-nitrobenzoic acids. Vapour pressures and enthalpies of sublimation of the three nitrobenzoic acids. Journal of Chemical Thermodynamics, 1999, 31, 1429-1441.	2.0	31
82	Standard molar enthalpy of formation, vapour pressures, and standard molar enthalpy of sublimation of benzanthrone. Journal of Chemical Thermodynamics, 1999, 31, 1067-1075.	2.0	19
83	Vapour pressures and the enthalpies and entropies of sublimation of five dicarboxylic acids. Journal of Chemical Thermodynamics, 1999, 31, 1093-1107.	2.0	85
84	Vapour pressures, enthalpies and entropies of sublimation of trans -cinnamic acid and of nine methoxy and dimethoxycinnamic acids. Journal of Chemical Thermodynamics, 1999, 31, 1443-1456.	2.0	28
85	Enthalpies of combustion, vapour pressures, and enthalpies of sublimation of 5-amino-6-nitroquinoline and 4-aminoquinaldine. Journal of Chemical Thermodynamics, 1998, 30, 815-823.	2.0	10
86	Energetics of metal–ligand binding in copper(II) and nickel(II) complexes of two Schiff bases. Journal of the Chemical Society Dalton Transactions, 1997, , 1257-1262.	1.1	31
87	Vapour pressures and standard molar enthalpies of sublimation of two crystalline iron(III) \hat{I}^2 -diketonates. The mean molar (Fe-O) bond-dissociation enthalpies. Journal of Chemical Thermodynamics, 1996, 28, 413-419.	2.0	15
88	Vapour pressures and standard molar enthalpies of sublimation of seven crystalline copper(II) \hat{I}^2 -diketonates. The mean molar (Cu-O) bond-dissociation enthalpies. Journal of Chemical Thermodynamics, 1995, 27, 175-190.	2.0	44
89	Standard enthalpies of formation of N, N′-ethylenebis (4-aminopent-3-en-2-one) and N, N′-ethylenebis (3-amino-1-phenylbut-2-en-1-one). Journal of Chemical Thermodynamics, 1995, 27, 613-621.	2.0	9
90	Vapour pressures and standard molar enthalpies of sublimation of beryllium(II) and aluminium(III) benzoylacetonates. Journal of Alloys and Compounds, 1995, 224, 181-183.	5.5	2

#	Article	IF	CITATIONS
91	Enthalpies of combustion, vapour pressures, and enthalpies of sublimation of 3-, 5-, 6-, and 8-aminoquinoline. Journal of Chemical Thermodynamics, 1993, 25, 579-590.	2.0	29
92	Enthalpies of combustion of $2,2\hat{a}\in^2$, $4,4\hat{a}\in^2$, $6,6\hat{a}\in^2$ -hexamethylazobenzene-N,N-dioxide, $2,2\hat{a}\in^2$, $6,6\hat{a}\in^2$ -tetramethylazobenzene-N,N-dioxide, $2,4,6$ -trimethylnitrobenzene, and $2,6$ -dimethylnitrobenzene: the dissociation enthalpies of the N=N and N-O bonds. Journal of Chemical Thermodynamics, 1993, 25, 1253-1261.	2.0	10
93	Standard molar enthalpy of formation of bis(2,2,6,6-tetramethylheptane-3,5-dionato) dioxouranium(VI) in the crystalline and gaseous states: the mean U-O bond-dissociation enthalpy. Journal of Chemical Thermodynamics, 1993, 25, 1263-1272.	2.0	5
94	The enthalpy of sublimation of diphenylacetylene from Knudsen effusion studies. Thermochimica Acta, 1993, 228, 15-22.	2.7	27
95	Thermochemical and theoretical studies on cyclohexanediones. The Journal of Physical Chemistry, 1993, 97, 243-247.	2.9	23
96	Vapour pressures and standard molar enthalpy of sublimation of crystalline tris(pentane-2,4-dionato)ruthenium(III). Journal of Alloys and Compounds, 1993, 197, 105-107.	5.5	7
97	Standard enthalpies of formation of 3-methylpentane-2,4-dione and of bis(3-methylpentane-) Tj ETQq1 1 0.7843 Thermodynamics, 1992, 24, 585-594.	14 rgBT /0 2.0	Overlock 10 T 6
98	Enthalpy of combustion, vapour pressures, and enthalpy of sublimation of 3-nitrophenol. Journal of Chemical Thermodynamics, 1992, 24, 653-659.	2.0	11
99	Vapour pressures and enthalpies of sublimation of six halogen-substituted 8-hydroxyquinolines. Journal of Chemical Thermodynamics, 1992, 24, 715-724.	2.0	41
100	Vapour pressures and standard molar enthalpies of sublimation of four crystalline \hat{l}^2 -diketones. Journal of Chemical Thermodynamics, 1992, 24, 1219-1228.	2.0	40
101	The construction, testing and use of a new knudsen effusion apparatus. Thermochimica Acta, 1990, 171, 169-183.	2.7	147