

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3453583/publications.pdf Version: 2024-02-01

XINRIN

#	Article	IF	CITATIONS
1	Recent advances in catalytic hydrogenation of carbon dioxide. Chemical Society Reviews, 2011, 40, 3703.	18.7	2,713
2	Ethylene glycol: properties, synthesis, and applications. Chemical Society Reviews, 2012, 41, 4218.	18.7	819
3	Synthesis of Ethanol via Syngas on Cu/SiO ₂ Catalysts with Balanced Cu ⁰ –Cu ⁺ Sites. Journal of the American Chemical Society, 2012, 134, 13922-13925.	6.6	614
4	Recent advances in capture of carbon dioxide using alkali-metal-based oxides. Energy and Environmental Science, 2011, 4, 3805.	15.6	318
5	Recent advances in dialkyl carbonates synthesis and applications. Chemical Society Reviews, 2015, 44, 3079-3116.	18.7	262
6	A copper-phyllosilicate core-sheath nanoreactor for carbon–oxygen hydrogenolysis reactions. Nature Communications, 2013, 4, 2339.	5.8	254
7	Morphology control of ceria nanocrystals for catalytic conversion of CO2 with methanol. Nanoscale, 2013, 5, 5582.	2.8	237
8	Insight into the Balancing Effect of Active Cu Species for Hydrogenation of Carbon–Oxygen Bonds. ACS Catalysis, 2015, 5, 6200-6208.	5.5	203
9	Chemoselective synthesis of ethanol via hydrogenation of dimethyl oxalate on Cu/SiO 2 : Enhanced stability with boron dopant. Journal of Catalysis, 2013, 297, 142-150.	3.1	200
10	Propane dehydrogenation over Pt–Cu bimetallic catalysts: the nature of coke deposition and the role of copper. Nanoscale, 2014, 6, 10000-10008.	2.8	191
11	Sorption enhanced steam reforming of ethanol on Ni–CaO–Al2O3 multifunctional catalysts derived from hydrotalcite-like compounds. Energy and Environmental Science, 2012, 5, 8942.	15.6	168
12	Hydrogen Production via Steam Reforming of Ethanol on Phyllosilicate-Derived Ni/SiO ₂ : Enhanced Metal–Support Interaction and Catalytic Stability. ACS Sustainable Chemistry and Engineering, 2013, 1, 161-173.	3.2	167
13	Hydrogen Production via Glycerol Steam Reforming over Ni/Al ₂ O ₃ : Influence of Nickel Precursors. ACS Sustainable Chemistry and Engineering, 2013, 1, 1052-1062.	3.2	164
14	An Alternative Synthetic Approach for Efficient Catalytic Conversion of Syngas to Ethanol. Accounts of Chemical Research, 2014, 47, 1483-1492.	7.6	159
15	The synergistic effect between Ni sites and Ni-Fe alloy sites on hydrodeoxygenation of lignin-derived phenols. Applied Catalysis B: Environmental, 2019, 253, 348-358.	10.8	155
16	Hydrogenation of CO2 to formic acid on supported ruthenium catalysts. Catalysis Today, 2011, 160, 184-190.	2.2	150
17	Hydrogenation of dimethyl oxalate to ethylene glycol on a Cu/SiO ₂ /cordierite monolithic catalyst: Enhanced internal mass transfer and stability. AICHE Journal, 2012, 58, 2798-2809.	1.8	125
18	Thermodynamic analysis of hydrogen production from glycerol autothermal reforming. International Journal of Hydrogen Energy, 2009, 34, 5683-5690.	3.8	123

#	Article	IF	CITATIONS
19	Effect of Cerium Oxide Doping on the Performance of CaO-Based Sorbents during Calcium Looping Cycles. Environmental Science & Technology, 2015, 49, 5021-5027.	4.6	120
20	Hydrogen production from ethanol steam reforming over nickel based catalyst derived from Ni/Mg/Al hydrotalcite-like compounds. International Journal of Hydrogen Energy, 2010, 35, 6699-6708.	3.8	117
21	Thermodynamic analysis of glycerol dry reforming for hydrogen and synthesis gas production. Fuel, 2009, 88, 2148-2153.	3.4	113
22	Branched TiO2 nanoarrays sensitized with CdS quantum dots for highly efficient photoelectrochemical water splitting. Physical Chemistry Chemical Physics, 2013, 15, 12026.	1.3	109
23	Efficient tuning of surface copper species of Cu/SiO2 catalyst for hydrogenation of dimethyl oxalate to ethylene glycol. Chemical Engineering Journal, 2017, 313, 759-768.	6.6	104
24	Sintering-resistant Ni-based reforming catalysts obtained via the nanoconfinement effect. Chemical Communications, 2013, 49, 9383.	2.2	101
25	WOx domain size, acid properties and mechanistic aspects of glycerol hydrogenolysis over Pt/WOx/ZrO2. Applied Catalysis B: Environmental, 2019, 242, 410-421.	10.8	98
26	Thermodynamic Analysis of Glycerin Steam Reforming. Energy & Fuels, 2008, 22, 4285-4291.	2.5	95
27	Understanding electronic and optical properties of anatase TiO2 photocatalysts co-doped with nitrogen and transition metals. Physical Chemistry Chemical Physics, 2013, 15, 9549.	1.3	93
28	Effects of MoO3 loading and calcination temperature on the activity of the sulphur-resistant methanation catalyst MoO3/Î ³ -Al2O3. Applied Catalysis A: General, 2012, 431-432, 144-150.	2.2	87
29	First-row transition metal oxide oxygen evolution electrocatalysts: regulation strategies and mechanistic understandings. Sustainable Energy and Fuels, 2020, 4, 5417-5432.	2.5	86
30	Hydrogenation of dimethyl oxalate to ethylene glycol over mesoporous <scp><scp>Cu</scp></scp> â€ <scp>MCM</scp> â€41 catalysts. AICHE Journal, 2013, 59, 2530-2539.	1.8	85
31	Steam reforming of ethanol over Ni/ZrO2 catalysts: Effect of support on product distribution. International Journal of Hydrogen Energy, 2012, 37, 2940-2949.	3.8	81
32	Balancing Effect between Adsorption and Diffusion on Catalytic Performance Inside Hollow Nanostructured Catalyst. ACS Catalysis, 2019, 9, 2969-2976.	5.5	80
33	A High-Performance Nanoreactor for Carbon–Oxygen Bond Hydrogenation Reactions Achieved by the Morphology of Nanotube-Assembled Hollow Spheres. ACS Catalysis, 2018, 8, 1218-1226.	5.5	75
34	Kinetics Study of Hydrogenation of Dimethyl Oxalate over Cu/SiO ₂ Catalyst. Industrial & Engineering Chemistry Research, 2015, 54, 1243-1250.	1.8	72
35	Elucidating the nature and role of Cu species in enhanced catalytic carbonylation of dimethyl ether over Cu/H-MOR. Catalysis Science and Technology, 2015, 5, 4378-4389.	2.1	72
36	Enhanced oxygen mobility and reactivity for ethanol steam reforming. AICHE Journal, 2012, 58, 516-525.	1.8	70

#	Article	IF	CITATIONS
37	Hydrogen production by glycerol steam reforming with/without calcium oxide sorbent: A comparative study of thermodynamic and experimental work. Fuel Processing Technology, 2010, 91, 1812-1818.	3.7	67
38	Modifying the acidity of H-MOR and its catalytic carbonylation of dimethyl ether. Chinese Journal of Catalysis, 2016, 37, 1530-1537.	6.9	64
39	Selective oxidation of methanol to dimethoxymethane over bifunctional VOx/TS-1 catalysts. Chemical Communications, 2011, 47, 9345.	2.2	59
40	Selective oxidation of methanol to dimethoxymethane on V2O5–MoO3/γ-Al2O3 catalysts. Applied Catalysis B: Environmental, 2014, 160-161, 161-172.	10.8	59
41	Effects of extrinsic defects originating from the interfacial reaction of CeO2-x-nickel silicate on catalytic performance in methane dry reforming. Applied Catalysis B: Environmental, 2020, 277, 119278.	10.8	58
42	An Effective CuZn–SiO ₂ Bimetallic Catalyst Prepared by Hydrolysis Precipitation Method for the Hydrogenation of Methyl Acetate to Ethanol. Industrial & Engineering Chemistry Research, 2018, 57, 4526-4534.	1.8	57
43	An in situ infrared study of dimethyl carbonate synthesis from carbon dioxide and methanol over well-shaped CeO 2. Chinese Chemical Letters, 2017, 28, 65-69.	4.8	56
44	Surface-functionalized palladium catalysts for electrochemical CO ₂ reduction. Journal of Materials Chemistry A, 2020, 8, 15884-15890.	5.2	55
45	A Pd–Fe/α-Al2O3/cordierite monolithic catalyst for CO coupling to oxalate. Chemical Engineering Science, 2011, 66, 3513-3522.	1.9	52
46	Enhanced CO ₂ adsorption capacity and stability using CaOâ€based adsorbents treated by hydration. AICHE Journal, 2013, 59, 3586-3593.	1.8	52
47	N-doped Ag/TiO ₂ hollow spheres for highly efficient photocatalysis under visible-light irradiation. RSC Advances, 2013, 3, 720-724.	1.7	52
48	Active Cu ⁰ –Cu ^{σ+} Sites for the Hydrogenation of Carbon–Oxygen Bonds over Cu/CeO ₂ Catalysts. ACS Catalysis, 2022, 12, 1315-1325.	5.5	51
49	Hydrogen production by glycerol steam reforming with in situ hydrogen separation: A thermodynamic investigation. International Journal of Hydrogen Energy, 2010, 35, 10252-10256.	3.8	49
50	Kinetic studies on chromium-catalyzed conversion of glucose into 5-hydroxymethylfurfural in alkylimidazolium chloride ionic liquid. Chemical Engineering Journal, 2014, 237, 55-61.	6.6	49
51	Hydrogenation of Dimethyl Oxalate over Copper-Based Catalysts: Acid–Base Properties and Reaction Paths. Industrial & Engineering Chemistry Research, 2015, 54, 9699-9707.	1.8	49
52	Incorporation of Zr into Calcium Oxide for CO ₂ Capture by a Simple and Facile Sol–Gel Method. Industrial & Engineering Chemistry Research, 2016, 55, 7873-7879.	1.8	49
53	Three dimensional Ag/KCC-1 catalyst with a hierarchical fibrous framework for the hydrogenation of dimethyl oxalate. RSC Advances, 2016, 6, 12788-12791.	1.7	49
54	Fabrication of multi-shelled hollow Mg-modified CaCO 3 microspheres and their improved CO 2 adsorption performance. Chemical Engineering Journal, 2017, 321, 401-411.	6.6	47

#	Article	IF	CITATIONS
55	Electrochemical reduction of acetonitrile to ethylamine. Nature Communications, 2021, 12, 1949.	5.8	47
56	Ni-containing Cu/SiO2 catalyst for the chemoselective synthesis of ethanol via hydrogenation of dimethyl oxalate. Catalysis Today, 2016, 276, 28-35.	2.2	46
57	Promoting the activity of Ce-incorporated MOR in dimethyl ether carbonylation through tailoring the distribution of BrA _s nsted acids. Applied Catalysis B: Environmental, 2019, 256, 117777.	10.8	46
58	A comparative study of CeO2-Al2O3 support prepared with different methods and its application on MoO3/CeO2-Al2O3 catalyst for sulfur-resistant methanation. Applied Surface Science, 2013, 285, 267-277.	3.1	45
59	Modification of Y Zeolite with Alkaline Treatment: Textural Properties and Catalytic Activity for Diethyl Carbonate Synthesis. Industrial & Engineering Chemistry Research, 2013, 52, 6349-6356.	1.8	44
60	Investigation of sulfur-resistant, highly active unsupported MoS2 catalysts for synthetic natural gas production from CO methanation. Fuel Processing Technology, 2013, 110, 249-257.	3.7	44
61	Glycerol Hydrogenolysis to 1,3â€Propanediol on Tungstate/Zirconiaâ€Supported Platinum: Hydrogen Spillover Facilitated by Pt(1 1 1) Formation. ChemCatChem, 2016, 8, 3663-3671.	1.8	44
62	Crystal structures, acid–base properties, and reactivities of CexZr1â^'xO2 catalysts. Catalysis Today, 2009, 148, 323-328.	2.2	43
63	Enhancements of dimethyl carbonate synthesis from methanol and carbon dioxide: The in situ hydrolysis of 2-cyanopyridine and crystal face effect of ceria. Chinese Chemical Letters, 2015, 26, 1096-1100.	4.8	42
64	Elucidating Surface and Bulk Phase Transformation in Fischer–Tropsch Synthesis Catalysts and Their Influences on Catalytic Performance. ACS Catalysis, 2019, 9, 7976-7983.	5.5	42
65	The Mn-promoted double-shelled CaCO3 hollow microspheres as high efficient CO2 adsorbents. Chemical Engineering Journal, 2019, 372, 53-64.	6.6	42
66	Highly efficient CO ₂ electrolysis within a wide operation window using octahedral tin oxide single crystals. Journal of Materials Chemistry A, 2021, 9, 7848-7856.	5.2	42
67	Facile Synthesis of Cu@CeO ₂ and Its Catalytic Behavior for the Hydrogenation of Methyl Acetate to Ethanol. ChemCatChem, 2017, 9, 2085-2090.	1.8	41
68	Monodisperse Nanoâ€Fe ₃ O ₄ on αâ€Al ₂ O ₃ Catalysts for Fischer–Tropsch Synthesis to Lower Olefins: Promoter and Size Effects. ChemCatChem, 2017, 9, 3144-3152.	1.8	41
69	Stable Surface-Anchored Cu Nanocubes for CO ₂ Electroreduction to Ethylene. ACS Applied Nano Materials, 2020, 3, 8328-8334.	2.4	41
70	Deactivation Kinetics for the Carbonylation of Dimethyl Ether to Methyl Acetate on H-MOR. Industrial & Engineering Chemistry Research, 2017, 56, 13618-13627.	1.8	40
71	Double-Site Doping of a V Promoter on Ni <i></i> -V-MgAl Catalysts for the DRM Reaction: Simultaneous Effect on CH ₄ and CO ₂ Activation. ACS Catalysis, 2021, 11, 8749-8765.	5.5	40
72	Hydrogenation of Dimethyl Oxalate Using Extruded Cu/SiO ₂ Catalysts: Mechanical Strength and Catalytic Performance. Industrial & Engineering Chemistry Research, 2012, 51, 13935-13943.	1.8	39

#	Article	IF	CITATIONS
73	Catalytic Oxidative Carbonylation over Cu ₂ O Nanoclusters Supported on Carbon Materials: The Role of the Carbon Support. ChemCatChem, 2014, 6, 2671-2679.	1.8	39
74	Enhanced Fischer–Tropsch synthesis performance of iron-based catalysts supported on nitric acid treated N-doped CNTs. Applied Surface Science, 2015, 347, 643-650.	3.1	38
75	Iron Nanoparticles Tuned to Catalyze CO ₂ Electroreduction in Acidic Solutions through Chemical Microenvironment Engineering. ACS Catalysis, 2022, 12, 7517-7523.	5.5	38
76	On the origin of reactivity of steam reforming of ethylene glycol on supported Ni catalysts. Physical Chemistry Chemical Physics, 2012, 14, 4066.	1.3	37
77	Cu-doped zeolites for catalytic oxidative carbonylation: The role of BrÃ,nsted acids. Applied Catalysis A: General, 2012, 417-418, 236-242.	2.2	37
78	Porous Spherical CaO-based Sorbents via PSS-Assisted Fast Precipitation for CO ₂ Capture. ACS Applied Materials & Interfaces, 2014, 6, 18072-18077.	4.0	37
79	Influence of Acid Strength on the Reactivity of Dimethyl Ether Carbonylation over H-MOR. ACS Sustainable Chemistry and Engineering, 2019, 7, 2027-2034.	3.2	37
80	Nano-Assembled Mordenite Zeolite with Tunable Morphology for Carbonylation of Dimethyl Ether. ACS Applied Nano Materials, 2020, 3, 6460-6468.	2.4	37
81	Ni–Zn Dual Sites Switch the CO ₂ Hydrogenation Selectivity via Tuning of the d-Band Center. ACS Catalysis, 2022, 12, 3346-3356.	5.5	36
82	Copper Phyllosilicate Nanotube Catalysts for the Chemosynthesis of Cyclohexane via Hydrodeoxygenation of Phenol. ACS Catalysis, 2022, 12, 4724-4736.	5.5	35
83	Superior reactivity of skeletal Ni-based catalysts for low-temperature steam reforming to produce CO-free hydrogen. Physical Chemistry Chemical Physics, 2012, 14, 3295.	1.3	34
84	Microwave synthesis, characterization and transesterification activities of Ti-MCM-41. Microporous and Mesoporous Materials, 2012, 156, 22-28.	2.2	33
85	Effect of cobalt and its adding sequence on the catalytic performance of MoO3/Al2O3 toward sulfur-resistant methanation. Journal of Energy Chemistry, 2014, 23, 35-42.	7.1	32
86	High-Performance CoCu Catalyst Encapsulated in KIT-6 for Higher Alcohol Synthesis from Syngas. ACS Sustainable Chemistry and Engineering, 2020, 8, 200-209.	3.2	32
87	Role of BrÃ,nsted Acid Sites within 8-MR of Mordenite in the Deactivation Roadmap for Dimethyl Ether Carbonylation. ACS Catalysis, 2021, 11, 5647-5657.	5.5	32
88	Effect of sulfidation temperature on the catalytic activity of MoO3/CeO2–Al2O3 toward sulfur-resistant methanation. Applied Catalysis A: General, 2013, 466, 224-232.	2.2	31
89	Template-induced Al distribution in MOR and enhanced activity in dimethyl ether carbonylation. Physical Chemistry Chemical Physics, 2020, 22, 11374-11381.	1.3	30
90	Tuning Porosity of Ti-MCM-41: Implication for Shape Selective Catalysis. ACS Applied Materials & Amp; Interfaces, 2011, 3, 2154-2160.	4.0	29

#	Article	IF	CITATIONS
91	Selective Oxidation of Methanol to Dimethoxymethane over Mesoporous Alâ€Pâ€Vâ€O Catalysts. AICHE Journal, 2013, 59, 2587-2593.	1.8	29
92	Ultrasound assisted interfacial synthesis of gold nanocones. Chemical Communications, 2013, 49, 987-989.	2.2	29
93	A well fabricated PtSn/SiO ₂ catalyst with enhanced synergy between Pt and Sn for acetic acid hydrogenation to ethanol. RSC Advances, 2016, 6, 51005-51013.	1.7	29
94	Synthesis of Dimethyl Carbonate through Vaporâ€Phase Carbonylation Catalyzed by Pdâ€Đoped Zeolites: Interaction of Lewis Acidic Sites and Pd Species. ChemCatChem, 2013, 5, 2174-2177.	1.8	28
95	Copperâ€Catalyzed and Protonâ€Directed Selective Hydroxymethylation of Alkynes with CO ₂ . Angewandte Chemie - International Edition, 2021, 60, 3984-3988.	7.2	28
96	Effect of SSIE structure of Cu-exchanged β and Y on the selectivity for synthesis of diethyl carbonate by oxidative carbonylation of ethanol: A comparative investigation. Catalysis Today, 2010, 149, 202-206.	2.2	27
97	High CO methanation activity on zirconia-supported molybdenum sulfide catalyst. Journal of Energy Chemistry, 2014, 23, 625-632.	7.1	27
98	Adsorption of CO ₂ on MgAl-CO ₃ LDHs-Derived Sorbents with 3D Nanoflower-like Structure. Energy & Fuels, 2018, 32, 5313-5320.	2.5	27
99	Fabrication of Fe ₂ C Embedded in Hollow Carbon Spheres: a Highâ€Performance and Stable Catalyst for Fischerâ€Tropsch Synthesis. ChemCatChem, 2018, 10, 3883-3891.	1.8	27
100	Enhanced Selectivity and Stability of Cu/SiO ₂ Catalysts for Dimethyl Oxalate Hydrogenation to Ethylene Glycol by Using Silane Coupling Agents for Surface Modification. Industrial & Engineering Chemistry Research, 2020, 59, 9414-9422.	1.8	27
101	Insight into the Tunable CuY Catalyst for Diethyl Carbonate by Oxycarbonylation: Preparation Methods and Precursors. Industrial & Engineering Chemistry Research, 2014, 53, 5838-5845.	1.8	25
102	Hydrogenation of CO2 to formic acid catalyzed by heterogeneous Ru-PPh3/Al2O3 catalysts. Fuel Processing Technology, 2018, 178, 98-103.	3.7	25
103	Morphology-Dependent Catalytic Performance of Mordenite in Carbonylation of Dimethyl Ether: Enhanced Activity with High <i>c</i> / <i>b</i> Ratio. ACS Applied Materials & Interfaces, 2019, 11, 24000-24005.	4.0	25
104	Bimetallic CoCu catalyst derived from in-situ grown Cu-ZIF-67 encapsulated inside KIT-6 for higher alcohol synthesis from syngas. Fuel, 2020, 278, 118292.	3.4	25
105	Enhanced multi-carbon selectivity via CO electroreduction approach. Journal of Catalysis, 2021, 398, 185-191.	3.1	25
106	Effect of Ti on Ag catalyst supported on spherical fibrous silica for partial hydrogenation of dimethyl oxalate. Applied Surface Science, 2019, 466, 592-600.	3.1	24
107	Cas phase decarbonylation of diethyl oxalate to diethyl carbonate over alkali-containing catalyst. Journal of Molecular Catalysis A, 2009, 306, 130-135.	4.8	23
108	Microwave preparation of Ti-containing mesoporous materials. Application as catalysts for transesterification. Chemical Engineering Journal, 2011, 166, 744-750.	6.6	23

#	Article	IF	CITATIONS
109	Hydrogenation of carbon monoxide over cobalt nanoparticles supported on carbon nanotubes. International Journal of Hydrogen Energy, 2011, 36, 8365-8372.	3.8	23
110	Reaction mechanism of dimethyl carbonate synthesis on Cu/β zeolites: DFT and AIM investigations. RSC Advances, 2012, 2, 7109.	1.7	23
111	Effect of the ceria–alumina composite support on the Mo-based catalyst's sulfur-resistant activity for the synthetic natural gas process. Reaction Kinetics, Mechanisms and Catalysis, 2012, 106, 495-506.	0.8	23
112	Isobutane Dehydrogenation over InPtSn/ZnAl ₂ O ₄ Catalysts: Effect of Indium Promoter. Industrial & Engineering Chemistry Research, 2018, 57, 11265-11270.	1.8	23
113	Influence of water vapor on cyclic CO2 capture performance in both carbonation and decarbonation stages for Ca-Al mixed oxide. Chemical Engineering Journal, 2019, 359, 542-551.	6.6	23
114	Supported heteropolyacids catalysts for the selective hydrocracking and isomerization of n-C16 to produce jet fuel. Applied Catalysis A: General, 2020, 598, 117556.	2.2	23
115	Effect of sulfidation temperature on the catalytic behavior of unsupported MoS2 catalysts for synthetic natural gas production from syngas. Journal of Molecular Catalysis A, 2013, 378, 99-108.	4.8	22
116	Dimethyl carbonate synthesis from methyl nitrite and CO over activated carbon supported Wacker-type catalysts: The surface chemistry of activated carbon. Catalysis Communications, 2015, 72, 43-48.	1.6	22
117	Carbonylation of dimethyl ether over MOR and Cu/H-MOR catalysts: Comparative investigation of deactivation behavior. Applied Catalysis A: General, 2019, 576, 1-10.	2.2	22
118	Electrode Engineering for Electrochemical CO ₂ Reduction. Energy & Fuels, 2022, 36, 4234-4249.	2.5	22
119	Effect of composite supports on the methanation activity of Co-Mo-based sulphur-resistant catalysts. Journal of Natural Gas Chemistry, 2012, 21, 767-773.	1.8	21
120	A Fe ₅ C ₂ nanocatalyst for the preferential synthesis of ethanol via dimethyl oxalate hydrogenation. Chemical Communications, 2017, 53, 5376-5379.	2.2	20
121	Al-Stabilized Double-Shelled Hollow CaO-Based Microspheres with Superior CO ₂ Adsorption Performance. Energy & Fuels, 2018, 32, 9692-9700.	2.5	20
122	Partial hydrogenation of dimethyl oxalate on Cu/SiO2 catalyst modified by sodium silicate. Catalysis Today, 2020, 358, 68-73.	2.2	20
123	CO2 sorbents derived from capsule-connected Ca-Al hydrotalcite-like via low-saturated coprecipitation. Fuel Processing Technology, 2018, 177, 210-218.	3.7	19
124	A nitrogen-doped PtSn nanocatalyst supported on hollow silica spheres for acetic acid hydrogenation. Chemical Communications, 2018, 54, 8818-8821.	2.2	19
125	Ethanol steam reforming over Ni/NixMg1â^xO: Inhibition of surface nickel species diffusion into the bulk. International Journal of Hydrogen Energy, 2011, 36, 326-332.	3.8	18
126	Factors influencing the Fischer–Tropsch synthesis performance of iron-based catalyst: Iron oxide dispersion, distribution and reducibility. Fuel Processing Technology, 2015, 139, 25-32.	3.7	18

Χίνβι

#	Article	IF	CITATIONS
127	Effect of surface hydroxyl group of ultra-small silica on the chemical states of copper catalyst for dimethyl oxalate hydrogenation. Catalysis Today, 2020, 350, 127-135.	2.2	18
128	Deactivation Mechanism of Cu/SiO ₂ Catalysts in the Synthesis of Ethylene Glycol via Methyl Glycolate Hydrogenation. Industrial & Engineering Chemistry Research, 2020, 59, 12381-12388.	1.8	18
129	Improved Catalytic Performance in Dimethyl Ether Carbonylation over Hierarchical Mordenite by Enhancing Mass Transfer. Industrial & Engineering Chemistry Research, 2020, 59, 13861-13869.	1.8	18
130	Synergistic effect for selective hydrodeoxygenation of anisole over Cu-ReOx/SiO2. Catalysis Today, 2021, 365, 223-234.	2.2	18
131	Kinetics Study for Ion-Exchange-Resin Catalyzed Hydrolysis of Methyl Glycolate. Industrial & Engineering Chemistry Research, 2012, 51, 11653-11658.	1.8	17
132	Mechanistic understanding of hydrogenation of acetaldehyde on Au(111): A DFT investigation. Surface Science, 2012, 606, 1608-1617.	0.8	17
133	The role of the distribution of Ce species on MoO3/CeO2–Al2O3 catalysts in sulfur-resistant methanation. Catalysis Communications, 2013, 35, 32-35.	1.6	17
134	Effect of environment around the active center Cu + species on the catalytic activity of CuY zeolites in dimethyl carbonate synthesis: A theoretical study. Fuel Processing Technology, 2014, 128, 310-318.	3.7	17
135	Effect of extra-framework silicon on the catalytic activity of CuÎ ² zeolite catalyst for synthesis of diethyl carbonate by oxidative carbonylation of ethanol. Chemical Engineering Journal, 2011, 172, 526-530.	6.6	16
136	Effect of stepwise sulfidation on a MoO3/CeO2–Al2O3 catalyst for sulfur-resistant methanation. Applied Catalysis A: General, 2014, 469, 89-97.	2.2	16
137	Promoting dimethyl ether carbonylation over hot-water pretreated H-mordenite. Catalysis Today, 2020, 339, 86-92.	2.2	16
138	Boosting oxygen evolution over inverse spinel Fe-Co-Mn oxide nanocubes through electronic structure engineering. Chemical Engineering Journal, 2022, 433, 134446.	6.6	16
139	Enhanced Thermocatalytic Stability by Coupling Nickel Step Sites with Nitrogen Heteroatoms for Dry Reforming of Methane. ACS Catalysis, 2022, 12, 316-330.	5.5	16
140	Catalytic synthesis of diethyl carbonate by oxidative carbonylation of ethanol over PdCl2/Cu-HMS catalyst. Chemical Engineering Journal, 2010, 163, 93-97.	6.6	15
141	Ordered mesoporous carbons supported wackerâ€ŧype catalyst for catalytic oxidative carbonylation. AICHE Journal, 2013, 59, 3797-3805.	1.8	15
142	Surface structure and reaction property of CuCl2-PdCl2 bimetallic catalyst in methanol oxycarbonylation: A DFT approach. Applied Surface Science, 2014, 292, 117-127.	3.1	15
143	Synergy between Palladium and Potassium Species for Efficient Activation of Carbon Monoxide in the Synthesis of Dimethyl Carbonate. ChemCatChem, 2015, 7, 2460-2466.	1.8	15
144	Effects of MoO 3 loading and calcination temperature on the catalytic performance of MoO 3 /CeO 2 toward sulfur-resistant methanation. Fuel Processing Technology, 2015, 138, 263-270.	3.7	15

#	Article	IF	CITATIONS
145	Effects of potassium promoter on the performance of PdCl 2 –CuCl 2 /AC catalysts for the synthesis of dimethyl carbonate from CO and methyl nitrite. Chinese Chemical Letters, 2015, 26, 1359-1363.	4.8	15
146	A Facile and Efficient Modification of CNTs for Improved Fischer–Tropsch Performance on Iron Catalyst: Alkali Modification. ChemCatChem, 2016, 8, 1454-1458.	1.8	15
147	Enhancement of Dimethyl Carbonate Synthesis with In Situ Hydrolysis of 2,2â€Đimethoxy Propane. Chemical Engineering and Technology, 2016, 39, 723-729.	0.9	15
148	Effect of Ca Promoter on the Structure and Catalytic Behavior of FeK/Al 2 O 3 Catalyst in Fischerâ€Tropsch Synthesis. ChemCatChem, 2019, 11, 3220-3226.	1.8	15
149	Preferential synthesis of ethanol from syngas via dimethyl oxalate hydrogenation over an integrated catalyst. Chemical Communications, 2019, 55, 5555-5558.	2.2	15
150	Insight into the Role of Cu–ZrO ₂ Interaction in Methanol Synthesis from CO ₂ Hydrogenation. Industrial & Engineering Chemistry Research, 2022, 61, 6872-6883.	1.8	15
151	The effects of promoters over PdCl2-CuCl2/HMS catalysts for the synthesis of diethyl carbonate by oxidative carbonylation of ethanol. Chemical Engineering Journal, 2008, 143, 220-224.	6.6	14
152	The role of oxygen species in the selective oxidation of methanol to dimethoxymethane over VOx/TS-1 catalyst. Journal of Industrial and Engineering Chemistry, 2017, 45, 296-300.	2.9	14
153	Novel fabrication of copper oxides on AC and its enhanced catalytic performance on oxidative carbonylation of methanol. Chinese Chemical Letters, 2017, 28, 70-74.	4.8	13
154	Graphene oxide-ordered mesoporous silica composite supported Co-based catalysts for CO hydrogenation to higher alcohols. Applied Catalysis A: General, 2019, 583, 117123.	2.2	13
155	insight for the effect of bridging <mmi:math xmins:mmi="http://www.w3.org/1998/Math/Math/Math/Math/Math/Math/Math/Math</td> <td>ıl:m8ext><!--</td--><td>/mmatmrow><</td></td>	ıl:m8ext> </td <td>/mmatmrow><</td>	/mmatmrow><
156	471, 670-677. Janus Au–Fe _{2.2} C Catalyst for Direct Conversion of Syngas to Higher Alcohols. ACS Sustainable Chemistry and Engineering, 2021, 9, 11258-11268.	3.2	12
157	Effects of Intimacy between Acid and Metal Sites on the Isomerization of n-C16 at the Large/Minor Nanoscale and Atomic Scale. ACS Catalysis, 2022, 12, 4092-4102.	5.5	12
158	Enhanced hydrodeoxygenation of lignin-derived anisole to arenes catalyzed by Mn-doped Cu/Al2O3. Green Energy and Environment, 2023, 8, 927-937.	4.7	12
159	Engineered Chemical Utilization of CO ₂ to Methanol via Direct and Indirect Hydrogenation Pathways: A Review. Industrial & Engineering Chemistry Research, 2022, 61, 10319-10335.	1.8	12
160	Carbonation Condition and Modeling Studies of Calcium-Based Sorbent in the Fixed-Bed Reactor. Industrial & Engineering Chemistry Research, 2014, 53, 10457-10464.	1.8	11
161	Kinetics of sulfur-resistant methanation over supported molybdenum-based catalyst. Journal of the Taiwan Institute of Chemical Engineers, 2016, 68, 239-245.	2.7	11
162	Hydrogenation of scCO ₂ to Formic Acid Catalyzed by Heterogeneous Ruthenium(III)/Al ₂ O ₃ Catalysts. Chemistry Letters, 2016, 45, 555-557.	0.7	11

#	Article	IF	CITATIONS
163	Insights into the doping effect of rare-earth metal on ZnAl2O4 supported PtSn catalyzed isobutane dehydrogenation. Catalysis Today, 2021, 368, 58-65.	2.2	11
164	Chemodivergent Synthesis of One-Carbon-Extended Alcohols via Copper-Catalyzed Hydroxymethylation of Alkynes with Formic Acid. Organic Letters, 2021, 23, 4997-5001.	2.4	11
165	Mechanistic insight into formaldehyde hydroformylation catalyzed by rhodium complexes: A theoretical and experimental study. Journal of Catalysis, 2021, 399, 41-51.	3.1	11
166	Activation of the MoS ₂ Basal Plane to Enhance CO Hydrogenation to Methane Activity Through Increasing S Vacancies. ACS Applied Materials & Interfaces, 2022, 14, 7741-7755.	4.0	11
167	Transesterification of dimethyl oxalate with phenol over TiO ₂ /SiO ₂ : Catalyst screening and reaction optimization. AICHE Journal, 2008, 54, 3260-3272.	1.8	10
168	A DFT study on CO methanation over the activated basal plane from a strained two-dimensional nano-MoS2. Applied Surface Science, 2019, 479, 360-367.	3.1	10
169	The hydrotreatment of n 16 over Pt/HPMo/SBAâ€15 and the investigation of diffusion effect using a novel Wâ€P criterion. AICHE Journal, 2021, 67, e17330.	1.8	10
170	Modeling of a Packed Bubble Column for Methyl Nitrite Regeneration Based on Reaction Kinetics and Mass Transfer. Industrial & Engineering Chemistry Research, 2013, 52, 2814-2823.	1.8	9
171	Effect of H ₂ S Concentration on MoO ₃ /Al ₂ O ₃ and CoO-MoO ₃ /Al ₂ O ₃ Catalysts for Sulfur Presistant Methanation, Wull Huavue Xuebao/ Acta Physico - Chimica Sinica, 2015, 31, 545-551	2.2	9
172	Enhanced methanation stability of nano-sized MoS2 catalysts by adding Al2O3. Frontiers of Chemical Science and Engineering, 2015, 9, 33-39.	2.3	9
173	2D surface induced self-assembly of Pd nanocrystals into nanostrings for enhanced formic acid electrooxidation. Journal of Materials Chemistry A, 2020, 8, 17128-17135.	5.2	9
174	Promotional effect of indium on Cu/SiO ₂ catalysts for the hydrogenation of dimethyl oxalate to ethylene glycol. Catalysis Science and Technology, 2021, 11, 6854-6865.	2.1	9
175	Effect of Sulfate Modification on Structure Properties, Surface Acidity, and Transesterification Catalytic Performance of Titanium-Submitted Mesoporous Molecular Sieve. Industrial & Engineering Chemistry Research, 2012, 51, 5737-5742.	1.8	8
176	DFT and DRIFTS studies of the oxidative carbonylation of methanol over Î ³ -Cu2Cl(OH)3: the influence of Cl. RSC Advances, 2012, 2, 8752.	1.7	7
177	The effect of catalyst preparation on the activity of MoO3-SiO2 catalyst in transesterification of diethyl oxalate. Kinetics and Catalysis, 2014, 55, 763-769.	0.3	7
178	Autocatalytic Kinetic Study of Dimethyl Oxalate Consecutive Hydrolysis. Industrial & Engineering Chemistry Research, 2014, 53, 4207-4214.	1.8	7
179	DFT investigations of the reaction mechanism of diethyl carbonate synthesis catalyzed by Cu(I)/ \hat{I}^2 or Pd(II)/ \hat{I}^2 zeolites. Applied Surface Science, 2014, 308, 237-246.	3.1	7
180	Enhanced CuCl dispersion by regulating acidity of MCM-41 for catalytic oxycarbonylation of ethanol to diethyl carbonate. Frontiers of Chemical Science and Engineering, 2015, 9, 224-231.	2.3	7

#	Article	IF	CITATIONS
181	Homogeneous Catalytic Kinetics of Methyl Glycolate Hydrolysis. Chemical Engineering and Technology, 2016, 39, 918-926.	0.9	7
182	A facile controlled in-situ synthesis of monodisperse magnetic carbon nanotubes nanocomposites using water-ethylene glycol mixed solvents. Journal of Alloys and Compounds, 2016, 657, 138-143.	2.8	7
183	Examination of Tunable Edge Sites and Catalyst Deactivation in the MoS ₂ -Catalyzed Methanation of Syngas. Industrial & Engineering Chemistry Research, 2019, 58, 21996-22005.	1.8	7
184	Sulfur-resistant methanation over MoO3/CeO2–ZrO2 catalyst: Influence of Ce-addition methods. Journal of Energy Chemistry, 2019, 28, 31-38.	7.1	7
185	Tunable Fe3O4 nanoparticles assembled porous microspheres as catalysts for Fischer-Tropsch synthesis to lower olefins. Catalysis Today, 2021, 368, 133-139.	2.2	7
186	Effect of thermal pretreatment on the surface structure of PtSn/SiO2 catalyst and its performance in acetic acid hydrogenation. Frontiers of Chemical Science and Engineering, 2016, 10, 417-424.	2.3	6
187	A method for the quantitative analysis of gaseous mixtures by online mass spectrometry. International Journal of Mass Spectrometry, 2018, 434, 23-28.	0.7	6
188	Computational Insight into the Ligand Effect on the Original Activity of Rh-Catalyzed Formaldehyde Hydroformylation. Journal of Physical Chemistry C, 2021, 125, 25514-25524.	1.5	6
189	Precursor effect on catalytic properties of Mo-based catalyst for sulfur-resistant methanation. Korean Journal of Chemical Engineering, 2014, 31, 2157-2161.	1.2	5
190	Promoted effect of cobalt on surface (0 1 0) of MoS2 for CO methanation from a DFT study. Applied Surface Science, 2019, 463, 635-646.	3.1	5
191	Mo-Based Catalyst Supported on Binary Ceria–Lanthanum Solid Solution for Sulfur-Resistant Methanation: Effect of La Dopant. Industrial & Engineering Chemistry Research, 2019, 58, 1803-1811.	1.8	5
192	Interfacial phenomena in (de)hydrogenation reactions. Physical Chemistry Chemical Physics, 2013, 15, 11985.	1.3	4
193	Influence of Water on the Methanation Performance of Moâ€Based Sulfurâ€Resistant Catalysts with and without Cobalt Additive. Bulletin of the Korean Chemical Society, 2015, 36, 74-82.	1.0	4
194	Experimental and Kinetic Study of the Direct Synthesis of Hydrogen Peroxide from Hydrogen and Oxygen over Palladium Catalysts. Industrial & Engineering Chemistry Research, 2019, 58, 20573-20584.	1.8	4
195	Copperâ€Catalyzed and Protonâ€Directed Selective Hydroxymethylation of Alkynes with CO ₂ . Angewandte Chemie, 2021, 133, 4030-4034.	1.6	4
196	Efficient Synthesis of Mordenite Zeolite for Dimethyl Ether Carbonylation. Industrial & Engineering Chemistry Research, 2021, 60, 8085-8093.	1.8	3
197	Extremely Low CO/H ₂ Ratio Activation of a Precipitated Iron Catalyst for Enhanced Fischer–Tropsch Performance. Energy & Fuels, 2022, 36, 5384-5392.	2.5	3
198	The main factors controlling generation of synthetic natural gas by methanation of synthesis gas in the presence of sulfur-resistant Mo-based catalysts. Kinetics and Catalysis, 2013, 54, 338-343.	0.3	2

#	Article	IF	CITATIONS
199	Adsorption of CO ₂ on Mixed Oxides Derived from Ca–Al–ClO ₄ -Layered Double Hydroxide. Energy & Fuels, 0, , .	2.5	2
200	Effects of preparation method and Mo2C loading on the Mo2C/ZrO2 catalyst for sulfur-resistant methanation. Molecular Catalysis, 2020, 482, 110668.	1.0	2
201	Enhanced production of C ₂ –C ₄ alkanes from syngas <i>via</i> a metal sulfide–support interaction over Ni–MoS ₂ /Ce _{1â"x} La _x O _{2â"Î′} . Catalysis Science and Technology. 2020. 10. 4340-4351.	2.1	2
202	Lamellar-Structured Silicate Derived Highly Dispersed CoCu Catalyst for Higher Alcohol Synthesis from Syngas. Industrial & amp; Engineering Chemistry Research, 2022, 61, 6859-6871.	1.8	2
203	Monodisperse Nano-Fe3 O4 on α-Al2 O3 Catalysts for Fischer-Tropsch Synthesis to Lower Olefins: Promoter and Size Effects. ChemCatChem, 2017, 9, 3088-3089.	1.8	1
204	Regulating electronic environment on alkali metal-doped Cu@NS-SiO2 for selective anisole hydrodeoxygenation. Green Chemical Engineering, 2022, , .	3.3	0