
Miguel Weil

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/345351/publications.pdf Version: 2024-02-01

MICHEL WEIL

#	Article	IF	CITATIONS
1	251st ENMC international workshop: Polyglucosan storage myopathies 13–15 December 2019, Hoofddorp, the Netherlands. Neuromuscular Disorders, 2021, 31, 466-477.	0.3	4
2	Persistent Inflammatory Stimulation Drives the Conversion of MSCs to Inflammatory CAFs That Promote Pro-Metastatic Characteristics in Breast Cancer Cells. Cancers, 2021, 13, 1472.	1.7	25
3	Induced pluripotent stem cell (iPSC) lines from two individuals carrying a homozygous (BGUi007-A) and a heterozygous (BGUi006-A) mutation in ELP1 for in vitro modeling of familial dysautonomia. Stem Cell Research, 2021, 55, 102495.	0.3	2
4	Alleviation of a polyglucosan storage disorder by enhancement of autophagic glycogen catabolism. EMBO Molecular Medicine, 2021, 13, e14554.	3.3	13
5	ATP-citrate lyase promotes axonal transport across species. Nature Communications, 2021, 12, 5878.	5.8	11
6	Editorial: Using Small Molecules to Treat Macromolecule Storage Disorders. Frontiers in Cell and Developmental Biology, 2020, 8, 623613.	1.8	2
7	ATAT1-enriched vesicles promote microtubule acetylation via axonal transport. Science Advances, 2019, 5, eaax2705.	4.7	42
8	Minerval (2-hydroxyoleic acid) causes cancer cell selective toxicity by uncoupling oxidative phosphorylation and compromising bioenergetic compensation capacity. Bioscience Reports, 2019, 39, .	1.1	15
9	Pancreatic Pericytes Support Î ² -Cell Function in a Tcf7l2-Dependent Manner. Diabetes, 2018, 67, 437-447.	0.3	41
10	Multicolor Spectral-Specific Silicon Nanodetectors based on Molecularly Embedded Nanowires. Nano Letters, 2018, 18, 190-201.	4.5	22
11	miR126-5p Downregulation Facilitates Axon Degeneration and NMJ Disruption via a Non–Cell-Autonomous Mechanism in ALS. Journal of Neuroscience, 2018, 38, 5478-5494.	1.7	42
12	p27Kip1 Modulates Axonal Transport by Regulating α-Tubulin Acetyltransferase 1 Stability. Cell Reports, 2018, 23, 2429-2442.	2.9	30
13	Guaiacol as a drug candidate for treating adult polyglucosan body disease. JCI Insight, 2018, 3, .	2.3	33
14	A differential autophagy dependent response to DNA-double strand brakes in bone marrow mesenchymal stem cells from sporadic ALS patients. DMM Disease Models and Mechanisms, 2017, 10, 645-654.	1.2	4
15	A novel image-based high-throughput screening assay discovers therapeutic candidates for adult polyglucosan body disease. Biochemical Journal, 2017, 474, 3403-3420.	1.7	14
16	Familial Dysautonomia (FD) Human Embryonic Stem Cell Derived PNS Neurons Reveal that Synaptic Vesicular and Neuronal Transport Genes Are Directly or Indirectly Affected by IKBKAP Downregulation. PLoS ONE, 2015, 10, e0138807.	1.1	22
17	IKAP Deficiency in an FD Mouse Model and in Oligodendrocyte Precursor Cells Results in Downregulation of Genes Involved in Oligodendrocyte Differentiation and Myelin Formation. PLoS ONE, 2014, 9, e94612.	1.1	12
18	Involvement of IKAP in Peripheral Target Innervation and in Specific JNK and NGF Signaling in Developing PNS Neurons. PLoS ONE, 2014, 9, e113428.	1.1	41

MIGUEL WEIL

#	Article	IF	CITATIONS
19	Personalized Drug Discovery: HCA Approach Optimized for Rare Diseases at Tel Aviv University. Combinatorial Chemistry and High Throughput Screening, 2014, 17, 253-255.	0.6	4
20	Characterization of human sporadic ALS biomarkers in the familial ALS transgenic mSOD1G93A mouse model. Human Molecular Genetics, 2013, 22, 4720-4725.	1.4	23
21	Structural profiling and biological performance of phospholipid–hyaluronan functionalized single-walled carbon nanotubes. Journal of Controlled Release, 2013, 170, 295-305.	4.8	26
22	Two Potential Biomarkers Identified in Mesenchymal Stem Cells and Leukocytes of Patients with Sporadic Amyotrophic lateral Sclerosis. Disease Markers, 2012, 32, 211-220.	0.6	18
23	Two potential biomarkers identified in mesenchymal stem cells and leukocytes of patients with sporadic amyotrophic lateral sclerosis. Disease Markers, 2012, 32, 211-20.	0.6	14
24	Effects of IKAP/hELP1 Deficiency on Gene Expression in Differentiating Neuroblastoma Cells: Implications for Familial Dysautonomia. PLoS ONE, 2011, 6, e19147.	1.1	24
25	Assessing cellular toxicities in fibroblasts upon exposure to lipid-based nanoparticles: a high content analysis approach. Nanotechnology, 2011, 22, 494016.	1.3	23
26	IKAP/Elp1 involvement in cytoskeleton regulation and implication for familial dysautonomia. Human Molecular Genetics, 2011, 20, 1585-1594.	1.4	312
27	Thymic involution, a coâ€morbidity factor in amyotrophic lateral sclerosis. Journal of Cellular and Molecular Medicine, 2010, 14, 2470-2482.	1.6	34
28	Enriched Population of PNS Neurons Derived from Human Embryonic Stem Cells as a Platform for Studying Peripheral Neuropathies. PLoS ONE, 2010, 5, e9290.	1.1	27
29	Serum Free Cultured Bone Marrow Mesenchymal Stem Cells as a Platform to Characterize the Effects of Specific Molecules. PLoS ONE, 2010, 5, e12689.	1.1	27
30	IKAP/hELP1 down-regulation in neuroblastoma cells causes enhanced cell adhesion mediated by contactin overexpression. Cell Adhesion and Migration, 2010, 4, 541-550.	1.1	3
31	Bone Morphogenetic Protein Signaling Is Involved in Human Mesenchymal Stem Cell Survival in Serum-Free Medium. Stem Cells and Development, 2009, 18, 1283-1292.	1.1	18
32	p63 protein is essential for the embryonic development of vibrissae and teeth. Biochemical and Biophysical Research Communications, 2006, 340, 737-741.	1.0	25
33	Neural tube closure depends on nitric oxide synthase activity. Journal of Neurochemistry, 2006, 96, 247-253.	2.1	25
34	Conservation of expression and alternative splicing in the prosaposin gene. Molecular Brain Research, 2004, 129, 8-19.	2.5	15
35	Nitric oxide is involved in establishing the balance between cell cycle progression and cell death in the developing neural tube. Experimental Cell Research, 2003, 288, 354-362.	1.2	37
36	The CC chemokine RANTES in breast carcinoma progression: regulation of expression and potential mechanisms of promalignant activity. Cancer Research, 2002, 62, 1093-102.	0.4	237

MIGUEL WEIL

#	Article	IF	CITATIONS
37	Evidence That Wallerian Degeneration and Localized Axon Degeneration Induced by Local Neurotrophin Deprivation Do Not Involve Caspases. Journal of Neuroscience, 2000, 20, 1333-1341.	1.7	220
38	Caspase activation in the terminal differentiation of human epidermal keratinocytes. Current Biology, 1999, 9, 361-365.	1.8	513
39	The importance of timing differentiation during limb muscle development. Current Biology, 1998, 8, 642-652.	1.8	147
40	Programmed Cell Death in Animal Development. Cell, 1997, 88, 347-354.	13.5	2,578
41	Is programmed cell death required for neural tube closure?. Current Biology, 1997, 7, 281-284.	1.8	148
42	Schistosoma mansoni Antigens Recognized in Biomphalaria glabrata Hemolymph by Monoclonal Antibodies. American Journal of Tropical Medicine and Hygiene, 1989, 40, 605-612.	0.6	12