D Leanne Jones

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/345334/publications.pdf Version: 2024-02-01

D LEANNE LONES

#	Article	IF	CITATIONS
1	Escargot controls somatic stem cell maintenance through the attenuation of the insulin receptor pathway in Drosophila. Cell Reports, 2022, 39, 110679.	2.9	6
2	Redox signaling as a modulator of germline stem cell behavior: Implications for regenerative medicine. Free Radical Biology and Medicine, 2021, 166, 67-72.	1.3	3
3	Neuroglian regulates Drosophila intestinal stem cell proliferation through enhanced signaling via the epidermal growth factor receptor. Stem Cell Reports, 2021, 16, 1584-1597.	2.3	7
4	DNA Methylation Analysis Validates Organoids as a Viable Model for Studying Human Intestinal Aging. Cellular and Molecular Gastroenterology and Hepatology, 2020, 9, 527-541.	2.3	53
5	The impact of ageing on lipid-mediated regulation of adult stem cell behavior and tissue homeostasis. Mechanisms of Ageing and Development, 2020, 189, 111278.	2.2	8
6	Lipid Mediated Regulation of Adult Stem Cell Behavior. Frontiers in Cell and Developmental Biology, 2020, 8, 115.	1.8	66
7	EGFR signaling promotes basal autophagy for lipid homeostasis and somatic stem cell maintenance in the <i>Drosophila</i> testis. Autophagy, 2020, 16, 1145-1147.	4.3	5
8	EGFR Signaling Stimulates Autophagy to Regulate Stem Cell Maintenance and Lipid Homeostasis in the Drosophila Testis. Cell Reports, 2020, 30, 1101-1116.e5.	2.9	27
9	Mitochondrial fusion regulates lipid homeostasis and stem cell maintenance in the Drosophila testis. Nature Cell Biology, 2019, 21, 710-720.	4.6	58
10	Heterochromatin Protein 1 (HP1) inhibits stem cell proliferation induced by ectopic activation of the Jak/STAT pathway in the Drosophila testis. Experimental Cell Research, 2019, 377, 1-9.	1.2	5
11	Mitochondrial fission regulates germ cell differentiation by suppressing ROS-mediated activation of Epidermal Growth Factor Signaling in the Drosophila larval testis. Scientific Reports, 2019, 9, 19695.	1.6	26
12	Keeping it tight: The relationship between bacterial dysbiosis, septate junctions, and the intestinal barrier in <i>Drosophila</i> . Fly, 2018, 12, 34-40.	0.9	14
13	Topical Inhibition of the Electron Transport Chain Can Stimulate the Hair Cycle. Journal of Investigative Dermatology, 2018, 138, 968-972.	0.3	11
14	Intestinal Snakeskin Limits Microbial Dysbiosis during Aging and Promotes Longevity. IScience, 2018, 9, 229-243.	1.9	55
15	Intestinal stem cell ablation reveals differential requirements for survival in response to chemical challenge. Developmental Biology, 2017, 424, 10-17.	0.9	18
16	Tricellular junctions regulate intestinal stem cell behaviour to maintain homeostasis. Nature Cell Biology, 2017, 19, 52-59.	4.6	90
17	Pink1 and Parkin regulate <i>Drosophila</i> intestinal stem cell proliferation during stress and aging. Journal of Cell Biology, 2017, 216, 2315-2327.	2.3	41
18	Enhanced CLIP Uncovers IMP Protein-RNA Targets in Human Pluripotent Stem Cells Important for Cell Adhesion and Survival. Cell Reports, 2016, 15, 666-679.	2.9	118

D LEANNE JONES

#	Article	IF	CITATIONS
19	Simultaneous control of stemness and differentiation by the transcription factor Escargot in adult stem cells: How can we tease them apart?. Fly, 2016, 10, 53-59.	0.9	4
20	Human Papillomavirus Carcinogenesis: an Identity Crisis in the Retinoblastoma Tumor Suppressor Pathway. Journal of Virology, 2015, 89, 4708-4711.	1.5	44
21	Age-Related Changes to Drosophila m. Male Germline Stem Cells. , 2015, , 71-84.		0
22	<i>Escargot</i> maintains stemness and suppresses differentiation in <i>Drosophila</i> intestinal stem cells. EMBO Journal, 2014, 33, 2967-2982.	3.5	113
23	Regulation of <i>Drosophila</i> intestinal stem cell maintenance and differentiation by the transcription factor Escargot. EMBO Journal, 2014, 33, 2983-2996.	3.5	74
24	Escargot Restricts Niche Cell to Stem Cell Conversion in the Drosophila Testis. Cell Reports, 2014, 7, 722-734.	2.9	51
25	Investigating spermatogenesis in Drosophila melanogaster. Methods, 2014, 68, 218-227.	1.9	70
26	Persistent Replicative Stress Alters Polycomb Phenotypes and Tissue Homeostasis in Drosophila melanogaster. Cell Reports, 2014, 7, 859-870.	2.9	21
27	Headcase Promotes Cell Survival and Niche Maintenance in the Drosophila Testis. PLoS ONE, 2013, 8, e68026.	1.1	25
28	Increased longevity mediated by yeast NDI1 expression in Drosophila intestinal stem and progenitor cells. Aging, 2013, 5, 662-681.	1.4	36
29	Stem cells and pluripotency: emerging themes and tools. Molecular Biology of the Cell, 2012, 23, 977-977.	0.9	Ο
30	Dual fluorescence detection of protein and RNA in Drosophila tissues. Nature Protocols, 2012, 7, 1808-1817.	5.5	34
31	Efficiency of Spermatogonial Dedifferentiation during Aging. PLoS ONE, 2012, 7, e33635.	1.1	13
32	The let-7–Imp axis regulates ageing of the Drosophila testis stem-cell niche. Nature, 2012, 485, 605-610.	13.7	158
33	Local signaling within stem cell niches: insights from Drosophila. Current Opinion in Cell Biology, 2012, 24, 225-231.	2.6	24
34	Modulation of Longevity and Tissue Homeostasis by the Drosophila PGC-1 Homolog. Cell Metabolism, 2011, 14, 623-634.	7.2	369
35	Emerging models and paradigms for stem cell ageing. Nature Cell Biology, 2011, 13, 506-512.	4.6	240
36	The effects of aging on stem cell behavior in Drosophila. Experimental Gerontology, 2011, 46, 340-344.	1.2	32

D LEANNE JONES

#	Article	IF	CITATIONS
37	Regulation of adult stem cell behavior by nutrient signaling. Cell Cycle, 2011, 10, 2628-2634.	1.3	36
38	Dietary restriction enhances germline stem cell maintenance. Aging Cell, 2010, 9, 916-918.	3.0	43
39	Stem Cells and the Niche: A Dynamic Duo. Cell Stem Cell, 2010, 6, 103-115.	5.2	349
40	Walk the (Germ) Line. Cell Metabolism, 2009, 10, 78-79.	7.2	1
41	Multipotent somatic stem cells contribute to the stem cell niche in the Drosophila testis. Nature, 2008, 454, 1132-1136.	13.7	143
42	No place like home: anatomy and function of the stem cell niche. Nature Reviews Molecular Cell Biology, 2008, 9, 11-21.	16.1	659
43	Decline in Self-Renewal Factors Contributes to Aging of the Stem Cell Niche in the Drosophila Testis. Cell Stem Cell, 2007, 1, 470-478.	5.2	247
44	Aging and the Germ Line: Where Mortality and Immortality Meet. Stem Cell Reviews and Reports, 2007, 3, 192-200.	5.6	27
45	A Misexpression Screen Reveals Effects of bag-of-marbles and TGFβ Class Signaling on the Drosophila Male Germ-Line Stem Cell Lineage. Genetics, 2004, 167, 707-723.	1.2	164
46	Orientation of Asymmetric Stem Cell Division by the APC Tumor Suppressor and Centrosome. Science, 2003, 301, 1547-1550.	6.0	684
47	Signaling from germ cells mediated by the rhomboid homolog stet organizes encapsulation by somatic support cells. Development (Cambridge), 2002, 129, 4523-34.	1.2	100
48	Stem Cell Self-Renewal Specified by JAK-STAT Activation in Response to a Support Cell Cue. Science, 2001, 294, 2542-2545.	6.0	651