Tengis Gloveli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3453263/publications.pdf

Version: 2024-02-01

40 papers

2,320 citations

257357

24

h-index

330025 37 g-index

41 all docs

41 docs citations

41 times ranked 2596 citing authors

#	Article	IF	CITATIONS
1	Initiating a new national epilepsy surgery program: Experiences gathered in Georgia. Epilepsy and Behavior, 2020, 111, 107259.	0.9	2
2	International conference and workshop "Hallmarks of Epileptic Brain Activity―in Tbilisi, Georgia, October 24‣7, 2017. Epilepsia, 2018, 59, 897-898.	2.6	1
3	Cell Type-Specific Activity During Hippocampal Network Oscillations In Vitro. Springer Series in Computational Neuroscience, 2018, , 327-364.	0.3	0
4	Cell-specific synaptic plasticity induced by network oscillations. ELife, 2016, 5, .	2.8	35
5	Cell Type-Specific Separation of Subicular Principal Neurons during Network Activities. PLoS ONE, 2015, 10, e0123636.	1.1	18
6	Changes in neural network homeostasis trigger neuropsychiatric symptoms. Journal of Clinical Investigation, 2014, 124, 696-711.	3.9	81
7	GABA _B autoreceptor-mediated cell type-specific reduction of inhibition in epileptic mice. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 15073-15078.	3.3	44
8	Segregation of Axonal and Somatic Activity During Fast Network Oscillations. Science, 2012, 336, 1458-1461.	6.0	104
9	Lowâ€frequency stimulation of the temporoammonic pathway induces heterosynaptic disinhibition in the subiculum. Hippocampus, 2011, 21, 733-743.	0.9	3
10	Cell-Type-Specific Modulation of Feedback Inhibition by Serotonin in the Hippocampus. Journal of Neuroscience, 2011, 31, 8464-8475.	1.7	27
11	Proper synaptic vesicle formation and neuronal network activity critically rely on syndapin I. EMBO Journal, 2011, 30, 4955-4969.	3.5	74
12	Hippocampal spatial navigation: interneurons take responsibility. Journal of Physiology, 2010, 588, 4609-4610.	1.3	5
13	Neuronal Activity Patterns During Hippocampal Network Oscillations In Vitro. , 2010, , 247-276.		5
14	Glycinergic tonic inhibition of hippocampal neurons with depolarizing GABAergic transmission elicits histopathological signs of temporal lobe epilepsy. Journal of Cellular and Molecular Medicine, 2008, 12, 2848-2866.	1.6	105
15	Altered excitatory-inhibitory balance in the NMDA-hypofunction model of schizophrenia. Frontiers in Molecular Neuroscience, 2008, 1, 6.	1.4	249
16	On the formation of gamma-coherent cell assemblies by oriens lacunosum-moleculare interneurons in the hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 13490-13495.	3.3	178
17	Impaired hippocampal rhythmogenesis in a mouse model of mesial temporal lobe epilepsy. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 17530-17535.	3.3	111
18	Increased inhibitory input to CA1 pyramidal cells alters hippocampal gamma frequency oscillations in the MK-801 model of acute psychosis. Neurobiology of Disease, 2007, 25, 545-552.	2.1	24

#	Article	IF	Citations
19	Differential involvement of oriens/pyramidale interneurones in hippocampal network oscillationsin vitro. Journal of Physiology, 2005, 562, 131-147.	1.3	220
20	Altered Interaction Between the Entorhinal Cortex and Hippocampus in Amygdala Kindled Rats. , 2005, , 91-97.		0
21	Orthogonal arrangement of rhythm-generating microcircuits in the hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 13295-13300.	3.3	215
22	Effects of phencyclidines on signal transfer from the entorhinal cortex to the hippocampus in rats. Neuroscience Letters, 2004, 354, 185-188.	1.0	9
23	Kindling alters entorhinal cortex-hippocampal interaction by increased efficacy of presynaptic GABAb autoreceptors in layer III of the entorhinal cortex. Neurobiology of Disease, 2003, 13, 203-212.	2.1	20
24	Fast Rhythmic Bursting Can Be Induced in Layer 2/3 Cortical Neurons by Enhancing Persistent Na+Conductance or by Blocking BK Channels. Journal of Neurophysiology, 2003, 89, 909-921.	0.9	158
25	Fast Network Oscillations in the Rat Dentate Gyrus In Vitro. Journal of Neurophysiology, 2002, 87, 1165-1168.	0.9	53
26	Properties of entorhinal cortex deep layer neurons projecting to the rat dentate gyrus. European Journal of Neuroscience, 2001, 13, 413-420.	1.2	55
27	Entorhinal cortex projection cells to the hippocampal formation in vitro. Brain Research, 2001, 905, 224-231.	1.1	26
28	Dopamine Depresses Excitatory Synaptic Transmission Onto Rat Subicular Neurons Via Presynaptic D1-Like Dopamine Receptors. Journal of Neurophysiology, 2000, 84, 112-119.	0.9	69
29	Muscarinic Control of Dendritic Excitability and Ca2+Signaling in CA1 Pyramidal Neurons in Rat Hippocampal Slice. Journal of Neurophysiology, 1999, 82, 1909-1915.	0.9	24
30	Carbachol-induced changes in excitability and [Ca2+]isignalling in projection cells of medial entorhinal cortex layers II and III. European Journal of Neuroscience, 1999, 11, 3626-3636.	1.2	54
31	Potent depression of stimulus evoked field potential responses in the medial entorhinal cortex by serotonin. British Journal of Pharmacology, 1999, 128, 248-254.	2.7	24
32	Effects of glutamate uptake blockers on stimulus-induced field potentials in rat entorhinal cortex in vitro. Neuroscience Letters, 1999, 259, 103-106.	1.0	6
33	Serotonin reduces synaptic excitation in the superficial medial entorhinal cortex of the rat via a presynaptic mechanism. Journal of Physiology, 1998, 508, 119-129.	1.3	51
34	Laminar difference in GABA uptake and GAT-1 expression in rat CA1. Journal of Physiology, 1998, 512, 643-649.	1.3	67
35	Comparison of the effects of serotonin in the hippocampus and the entorhinal cortex. Molecular Neurobiology, 1998, 17, 59-72.	1.9	31
36	Interaction between superficial layers of the entorhinal cortex and the hippocampus in normal and epileptic temporal lobe. Epilepsy Research, 1998, 32, 183-193.	0.8	38

#	Article	IF	CITATIONS
37	Serotonin Reduces Polysynaptic Inhibition via 5-HT1A Receptors in the Superficial Entorhinal Cortex. Journal of Neurophysiology, 1998, 80, 1116-1121.	0.9	21
38	Systemic administration of the phencyclidine compound MK-801 affects stimulus-induced field potentials selectively in layer III of rat medial entorhinal cortex. Neuroscience Letters, 1997, 221, 93-96.	1.0	15
39	Frequency-Dependent Information Flow From the Entorhinal Cortex to the Hippocampus. Journal of Neurophysiology, 1997, 78, 3444-3449.	0.9	65
40	Serotonin reduces synaptic excitation of principal cells in the superficial layers of rat hippocampal-entorhinal cortex combined slices. Neuroscience Letters, 1995, 190, 37-40.	1.0	31