Li-Juan Xie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/345312/publications.pdf Version: 2024-02-01

LI-LUAN XIE

#	Article	lF	CITATIONS
1	OsARM1, an R2R3 MYB Transcription Factor, Is Involved in Regulation of the Response to Arsenic Stress in Rice. Frontiers in Plant Science, 2017, 8, 1868.	3.6	150
2	Autophagy contributes to regulation of the hypoxia response during submergence in <i>Arabidopsis thaliana</i> . Autophagy, 2015, 11, 2233-2246.	9.1	143
3	The AMP-Activated Protein Kinase KIN10 Is Involved in the Regulation of Autophagy in Arabidopsis. Frontiers in Plant Science, 2017, 8, 1201.	3.6	118
4	TRAF Family Proteins Regulate Autophagy Dynamics by Modulating AUTOPHAGY PROTEIN6 Stability in Arabidopsis. Plant Cell, 2017, 29, 890-911.	6.6	108
5	Autophagy regulates glucose-mediated root meristem activity by modulating ROS production in <i>Arabidopsis</i> . Autophagy, 2019, 15, 407-422.	9.1	102
6	Jasmonate Regulates Plant Responses to Postsubmergence Reoxygenation through Transcriptional Activation of Antioxidant Synthesis. Plant Physiology, 2017, 173, 1864-1880.	4.8	98
7	Unsaturation of Very-Long-Chain Ceramides Protects Plant from Hypoxia-Induced Damages by Modulating Ethylene Signaling in Arabidopsis. PLoS Genetics, 2015, 11, e1005143.	3.5	86
8	Arabidopsis acylâ€ <scp>C</scp> o <scp>A</scp> â€binding protein <scp>ACBP</scp> 3 participates in plant response to hypoxia by modulating veryâ€longâ€chain fatty acid metabolism. Plant Journal, 2015, 81, 53-67.	5.7	84
9	Disruption of the Arabidopsis Defense Regulator Genes SAG101, EDS1, and PAD4 Confers Enhanced Freezing Tolerance. Molecular Plant, 2015, 8, 1536-1549.	8.3	55
10	Arabidopsis SINAT Proteins Control Autophagy by Mediating Ubiquitylation and Degradation of ATG13. Plant Cell, 2020, 32, 263-284.	6.6	53
11	Alternative splicing and translation play important roles in hypoxic germination in rice. Journal of Experimental Botany, 2019, 70, 817-833.	4.8	51
12	Brassinosteroids Antagonize Jasmonate-Activated Plant Defense Responses through BRI1-EMS-SUPPRESSOR1 (BES1). Plant Physiology, 2020, 182, 1066-1082.	4.8	48
13	SINAT E3 Ubiquitin Ligases Mediate FREE1 and VPS23A Degradation to Modulate Abscisic Acid Signaling. Plant Cell, 2020, 32, 3290-3310.	6.6	46
14	Natural variation in the promoter of rice calcineurin Bâ€like protein10 (Os <scp>CBL</scp> 10) affects flooding tolerance during seed germination among rice subspecies. Plant Journal, 2018, 94, 612-625.	5.7	42
15	New insights into the role of lipids in plant hypoxia responses. Progress in Lipid Research, 2021, 81, 101072.	11.6	37
16	SWATH-MS quantitative proteomic investigation of nitrogen starvation in Arabidopsis reveals new aspects of plant nitrogen stress responses. Journal of Proteomics, 2018, 187, 161-170.	2.4	32
17	Polyunsaturated linolenoylâ€CoA modulates ERFâ€VIIâ€mediated hypoxia signaling in <i>Arabidopsis</i> . Journal of Integrative Plant Biology, 2020, 62, 330-348.	8.5	32
18	Long-Chain acyl-CoA Synthetase LACS2 Contributes to Submergence Tolerance by Modulating Cuticle Permeability in Arabidopsis. Plants, 2020, 9, 262.	3.5	20

LI-JUAN XIE

#	Article	IF	CITATIONS
19	The β-ketoacyl-CoA synthase KCS13 regulates the cold response in cotton by modulating lipid and oxylipin biosynthesis. Journal of Experimental Botany, 2020, 71, 5615-5630.	4.8	12
20	The Anaerobic Product Ethanol Promotes Autophagy-Dependent Submergence Tolerance in Arabidopsis. International Journal of Molecular Sciences, 2020, 21, 7361.	4.1	10
21	The plant ESCRT component FREE1 regulates peroxisome-mediated turnover of lipid droplets in germinating <i>Arabidopsis</i> seedlings. Plant Cell, 2022, 34, 4255-4273.	6.6	9
22	Arabidopsis thaliana Plants Engineered To Produce Astaxanthin Show Enhanced Oxidative Stress Tolerance and Bacterial Pathogen Resistance. Journal of Agricultural and Food Chemistry, 2019, 67, 12590-12598.	5.2	5