
Deborah K Hanson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3452889/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	In Situ, Protein-Mediated Generation of a Photochemically Active Chlorophyll Analogue in a Mutant Bacterial Photosynthetic Reaction Center. Biochemistry, 2021, 60, 1260-1275.	2.5	1
2	Switching sides—Reengineered primary charge separation in the bacterial photosynthetic reaction center. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 865-871.	7.1	11
3	Consequences of saturation mutagenesis of the protein ligand to the B-side monomeric bacteriochlorophyll in reaction centers from Rhodobacter capsulatus. Photosynthesis Research, 2019, 141, 273-290.	2.9	5
4	Manipulating the Energetics and Rates of Electron Transfer in <i>Rhodobacter capsulatus</i> Reaction Centers with Asymmetric Pigment Content. Journal of Physical Chemistry B, 2017, 121, 6989-7004.	2.6	15
5	Species differences in unlocking Bâ€side electron transfer in bacterial reaction centers. FEBS Letters, 2016, 590, 2515-2526.	2.8	8
6	Optimizing multi-step B-side charge separation in photosynthetic reaction centers from Rhodobacter capsulatus. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 150-159.	1.0	8
7	High yield of secondary B-side electron transfer in mutant Rhodobacter capsulatus reaction centers. Biochimica Et Biophysica Acta - Bioenergetics, 2014, 1837, 1892-1903.	1.0	10
8	High Throughput Engineering to Revitalize a Vestigial Electron Transfer Pathway in Bacterial Photosynthetic Reaction Centers. Journal of Biological Chemistry, 2012, 287, 8507-8514.	3.4	11
9	Determination of the Rate and Yield of B-side Quinone Reduction inRhodobacter capsulatusReaction Centersâ€. Biochemistry, 2006, 45, 7314-7322.	2.5	20
10	B-Side Electron Transfer To Form P+HB- in Reaction Centers from the F(L181)Y/Y(M208)F Mutant of Rhodobacter capsulatus. Journal of Physical Chemistry B, 2004, 108, 11827-11832.	2.6	24
11	Lysine substitutions near photoactive cofactors in the bacterial photosynthetic reaction center have opposite effects on the rate of triplet energy transfer. Chemical Physics, 2003, 294, 329-346.	1.9	5
12	Detergent effects on primary charge separation in wild-type and mutant Rhodobacter capsulatus reaction centers. Chemical Physics, 2003, 294, 305-318.	1.9	22
13	Quinone Reduction via Secondary B-Branch Electron Transfer in Mutant Bacterial Reaction Centersâ€. Biochemistry, 2003, 42, 1718-1730.	2.5	71
14	B-Side Charge Separation in Bacterial Photosynthetic Reaction Centers:Â Nanosecond Time Scale Electron Transfer from HB-to QBâ€. Biochemistry, 2003, 42, 2016-2024.	2.5	41
15	Comparison of M-Side Electron Transfer in Rb. sphaeroides and Rb. capsulatus Reaction Centers. Journal of Physical Chemistry B, 2002, 106, 1799-1808.	2.6	58
16	Title is missing!. Photosynthesis Research, 1998, 55, 275-280.	2.9	7
17	Title is missing!. Photosynthesis Research, 1998, 55, 267-273.	2.9	21
18	In Bacterial Reaction Centers, a Key Residue Suppresses Mutational Blockage of Two Different Proton Transfer Stepsâ€. Biochemistry, 1998, 37, 2077-2083.	2.5	14

#	Article	IF	CITATIONS
19	Antenna Excited State Decay Kinetics Establish Primary Electron Transfer in Reaction Centers as Heterogeneousâ€. Biochemistry, 1997, 36, 8677-8685.	2.5	25
20	A native electrostatic environment near QB is not sufficient to ensure rapid proton delivery in photosynthetic reaction centers. FEBS Letters, 1997, 407, 159-163.	2.8	9
21	Title is missing!. Photosynthesis Research, 1997, 52, 93-103.	2.9	13
22	Long-range electrostatic interaction in the bacterial photosynthetic reaction centre. Nature Structural and Molecular Biology, 1995, 2, 1057-1059.	8.2	52
23	Recombinant immunoglobulin variable domains generated from synthetic genes provide a system for in vitro characterization of lightâ€chain amyloid proteins. Protein Science, 1995, 4, 421-432.	7.6	98