
## Patrick van Rijn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3452884/publications.pdf Version: 2024-02-01



PATRICK MAN RUN

| #  | Article                                                                                                                                                                                        | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Photoactuating Artificial Muscles of Motor Amphiphiles as an Extracellular Matrix Mimetic Scaffold for Mesenchymal Stem Cells. Journal of the American Chemical Society, 2022, 144, 3543-3553. | 6.6  | 27        |
| 2  | Dynamic Covalent Cross‣inked Nanogel‣tabilized Pickering Emulsion for Responsive Microstructures.<br>Macromolecular Rapid Communications, 2022, 43, e2100766.                                  | 2.0  | 1         |
| 3  | Physics of Brain Cancer: Multiscale Alterations of Glioblastoma Cells under Extracellular Matrix<br>Stiffening. Pharmaceutics, 2022, 14, 1031.                                                 | 2.0  | 16        |
| 4  | Topography-Mediated Enhancement of Nonviral Gene Delivery in Stem Cells. Pharmaceutics, 2022, 14, 1096.                                                                                        | 2.0  | 3         |
| 5  | Celebrating 30 Years of <i>Netherlands Society for Biomaterials and Tissue Engineering</i> : Past,<br>Present, and Future. Tissue Engineering - Part A, 2022, 28, 459-460.                     | 1.6  | 0         |
| 6  | The Unfolded Protein Response Sensor PERK Mediates Stiffness-Dependent Adaptation in Glioblastoma<br>Cells. International Journal of Molecular Sciences, 2022, 23, 6520.                       | 1.8  | 4         |
| 7  | Full humanization of the glycolytic pathway in Saccharomyces cerevisiae. Cell Reports, 2022, 39, 111010.                                                                                       | 2.9  | 13        |
| 8  | An Efficient UV-C Disinfection Approach and Biological Assessment Strategy for Microphones. Applied<br>Sciences (Switzerland), 2022, 12, 7239.                                                 | 1.3  | 1         |
| 9  | Single Cell Reactomics: Realâ€īime Singleâ€Cell Activation Kinetics of Optically Trapped Macrophages.<br>Small Methods, 2021, 5, e2000849.                                                     | 4.6  | 13        |
| 10 | High-Throughput Methods in the Discovery and Study of Biomaterials and Materiobiology. Chemical<br>Reviews, 2021, 121, 4561-4677.                                                              | 23.0 | 89        |
| 11 | Macrophage–stroma interactions in fibrosis: biochemical, biophysical, and cellular perspectives.<br>Journal of Pathology, 2021, 254, 344-357.                                                  | 2.1  | 32        |
| 12 | Low nanogel stiffness favors nanogel transcytosis across an in vitro blood–brain barrier.<br>Nanomedicine: Nanotechnology, Biology, and Medicine, 2021, 34, 102377.                            | 1.7  | 25        |
| 13 | Adipose Stromal Cell-Secretome Counteracts Profibrotic Signals From IPF Lung Matrices. Frontiers in Pharmacology, 2021, 12, 669037.                                                            | 1.6  | 8         |
| 14 | 3D-Printable Hierarchical Nanogel-GelMA Composite Hydrogel System. Polymers, 2021, 13, 2508.                                                                                                   | 2.0  | 13        |
| 15 | pH Sensitive Dextran Coated Fluorescent Nanodiamonds as a Biomarker for HeLa Cells Endocytic<br>Pathway and Increased Cellular Uptake. Nanomaterials, 2021, 11, 1837.                          | 1.9  | 8         |
| 16 | Nanogels: A novel approach in antimicrobial delivery systems and antimicrobial coatings. Bioactive<br>Materials, 2021, 6, 3634-3657.                                                           | 8.6  | 63        |
| 17 | Aliphatic Quaternary Ammonium Functionalized Nanogels for Gene Delivery. Pharmaceutics, 2021, 13, 1964.                                                                                        | 2.0  | 5         |
| 18 | Well Plate Integrated Topography Gradient Screening Technology for Studying Cell‣urface<br>Topography Interactions. Advanced Biology, 2020, 4, e1900218.                                       | 3.0  | 9         |

| #  | Article                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Antimicrobial Electrodeposited Silver-Containing Calcium Phosphate Coatings. ACS Applied Materials<br>& Interfaces, 2020, 12, 5531-5541.                                                                                                     | 4.0 | 67        |
| 20 | Topography-driven alterations in endothelial cell phenotype and contact guidance. Heliyon, 2020, 6, e04329.                                                                                                                                  | 1.4 | 14        |
| 21 | Antimicrobial Nanogels with Nanoinjection Capabilities for Delivery of the Hydrophobic Antibacterial<br>Agent Triclosan. ACS Applied Polymer Materials, 2020, 2, 5779-5789.                                                                  | 2.0 | 29        |
| 22 | Topography-Mediated Myotube and Endothelial Alignment, Differentiation, and Extracellular Matrix<br>Organization for Skeletal Muscle Engineering. Polymers, 2020, 12, 1948.                                                                  | 2.0 | 11        |
| 23 | Highly Efficient Antimicrobial and Antifouling Surface Coatings with Triclosan-Loaded Nanogels. ACS<br>Applied Materials & Interfaces, 2020, 12, 57721-57731.                                                                                | 4.0 | 28        |
| 24 | Highâ€Throughput Screening and Hierarchical Topographyâ€Mediated Neural Differentiation of<br>Mesenchymal Stem Cells. Advanced Healthcare Materials, 2020, 9, e2000117.                                                                      | 3.9 | 36        |
| 25 | Synergistic Effect of Cell-Derived Extracellular Matrices and Topography on Osteogenesis of Mesenchymal Stem Cells. ACS Applied Materials & Interfaces, 2020, 12, 25591-25603.                                                               | 4.0 | 41        |
| 26 | Decoupling the Amplitude and Wavelength of Anisotropic Topography and the Influence on<br>Osteogenic Differentiation of Mesenchymal Stem Cells Using a High-Throughput Screening Approach.<br>ACS Applied Bio Materials, 2020, 3, 3690-3697. | 2.3 | 6         |
| 27 | Biomimetic Multiscale Hierarchical Topography Enhances Osteogenic Differentiation of Human<br>Mesenchymal Stem Cells. Advanced Materials Interfaces, 2020, 7, 2000385.                                                                       | 1.9 | 20        |
| 28 | Topography-Mediated Fibroblast Cell Migration Is Influenced by Direction, Wavelength, and Amplitude.<br>ACS Applied Bio Materials, 2020, 3, 2104-2116.                                                                                       | 2.3 | 24        |
| 29 | Nanogels with Selective Intracellular Reactivity for Intracellular Tracking and Delivery. Chemistry - A<br>European Journal, 2020, 26, 15084-15088.                                                                                          | 1.7 | 8         |
| 30 | Light-induced molecular rotation triggers on-demand release from liposomes. Chemical Communications, 2020, 56, 8774-8777.                                                                                                                    | 2.2 | 15        |
| 31 | Unidirectional rotating molecular motors dynamically interact with adsorbed proteins to direct the fate of mesenchymal stem cells. Science Advances, 2020, 6, eaay2756.                                                                      | 4.7 | 42        |
| 32 | Biointerface topography regulates phenotypic switching and cell apoptosis in vascular smooth muscle cells. Biochemical and Biophysical Research Communications, 2020, 526, 841-847.                                                          | 1.0 | 15        |
| 33 | Topography induced stiffness alteration of stem cells influences osteogenic differentiation.<br>Biomaterials Science, 2020, 8, 2638-2652.                                                                                                    | 2.6 | 41        |
| 34 | Biointerface topography mediates the interplay between endothelial cells and monocytes. RSC<br>Advances, 2020, 10, 13848-13854.                                                                                                              | 1.7 | 6         |
| 35 | Rapid and Robust Coating Method to Render Polydimethylsiloxane Surfaces Cell-Adhesive. ACS Applied<br>Materials & Interfaces, 2019, 11, 41091-41099.                                                                                         | 4.0 | 26        |
| 36 | Directional topography gradients drive optimum alignment and differentiation of human myoblasts.<br>Journal of Tissue Engineering and Regenerative Medicine, 2019, 13, 2234-2245.                                                            | 1.3 | 28        |

| #  | Article                                                                                                                                                                                | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Cargo shuttling by electrochemical switching of core–shell microgels obtained by a facile one-shot<br>polymerization. Chemical Science, 2019, 10, 1844-1856.                           | 3.7 | 38        |
| 38 | Biocatalytically induced surface modification of the tobacco mosaic virus and the bacteriophage M13. Chemical Communications, 2019, 55, 51-54.                                         | 2.2 | 3         |
| 39 | Directional Topography Influences Adipose Mesenchymal Stromal Cell Plasticity: Prospects for Tissue<br>Engineering and Fibrosis. Stem Cells International, 2019, 2019, 1-14.           | 1.2 | 28        |
| 40 | 3D impedimetric sensors as a tool for monitoring bacterial response to antibiotics. Lab on A Chip, 2019, 19, 1436-1447.                                                                | 3.1 | 48        |
| 41 | Mechanical and biological properties of electrodeposited calcium phosphate coatings. Materials<br>Science and Engineering C, 2019, 100, 475-484.                                       | 3.8 | 43        |
| 42 | Development of an Aptamer-Conjugated Polyrotaxane-Based Biodegradable Magnetic Resonance<br>Contrast Agent for Tumor-Targeted Imaging. ACS Applied Bio Materials, 2019, 2, 406-416.    | 2.3 | 14        |
| 43 | Inhibiting Bacterial Adhesion by Mechanically Modulated Microgel Coatings. Biomacromolecules, 2019, 20, 243-253.                                                                       | 2.6 | 55        |
| 44 | bFGF and Polyâ€RGD Cooperatively Establish Biointerface for Stem Cell Adhesion, Proliferation, and<br>Differentiation. Advanced Materials Interfaces, 2018, 5, 1700702.                | 1.9 | 12        |
| 45 | Crystal growth mechanism of calcium phosphate coatings on titanium by electrochemical deposition.<br>Surface and Coatings Technology, 2018, 334, 526-535.                              | 2.2 | 45        |
| 46 | Collagen morphology influences macrophage shape and marker expression inÂvitro. Journal of<br>Immunology and Regenerative Medicine, 2018, 1, 13-20.                                    | 0.2 | 15        |
| 47 | Development of a Novel Orthogonal Double Gradient for Highâ€Throughput Screening of Mesenchymal<br>Stem Cells–Materials Interaction. Advanced Materials Interfaces, 2018, 5, 1800504.  | 1.9 | 24        |
| 48 | Bioinspired Silica Mineralization on Viral Templates. Methods in Molecular Biology, 2018, 1776, 337-362.                                                                               | 0.4 | 8         |
| 49 | Directing Mesenchymal Stem Cells with Gold Nanowire Arrays. Advanced Materials Interfaces, 2018, 5, 1800334.                                                                           | 1.9 | 32        |
| 50 | The Relationship between Bulk Silicone and Benzophenone-Initiated Hydrogel Coating Properties.<br>Polymers, 2018, 10, 534.                                                             | 2.0 | 22        |
| 51 | Alkaliâ€Mediated Miscibility of Gelatin/Polycaprolactone for Electrospinning Homogeneous Composite<br>Nanofibers for Tissue Scaffolding. Macromolecular Bioscience, 2017, 17, 1700268. | 2.1 | 33        |
| 52 | Screening Platform for Cell Contact Guidance Based on Inorganic Biomaterial<br>Micro/nanotopographical Gradients. ACS Applied Materials & Interfaces, 2017, 9, 31433-31445.            | 4.0 | 67        |
| 53 | Surface Topography Guides Morphology and Spatial Patterning of Induced Pluripotent Stem Cell<br>Colonies. Stem Cell Reports, 2017, 9, 654-666.                                         | 2.3 | 120       |
| 54 | Anti-Microbial Biopolymer Hydrogel Scaffolds for Stem Cell Encapsulation. Polymers, 2017, 9, 149.                                                                                      | 2.0 | 10        |

| #  | Article                                                                                                                                                                                         | IF         | CITATIONS   |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-------------|
| 55 | Double Linear Gradient Biointerfaces for Determining Twoâ€Parameter Dependent Stem Cell Behavior.<br>ChemNanoMat, 2016, 2, 407-413.                                                             | 1.5        | 16          |
| 56 | Viruses, Artificial Viruses and Virusâ€Based Structures for Biomedical Applications. Advanced<br>Healthcare Materials, 2016, 5, 1386-1400.                                                      | 3.9        | 30          |
| 57 | Non-Covalently Stabilized Alginate Hydrogels as Functional Cell Scaffold Material. Macromolecular<br>Bioscience, 2016, 16, 1693-1702.                                                           | 2.1        | 16          |
| 58 | Microstructured Hydrogel Templates for the Formation of Conductive Gold Nanowire Arrays.<br>Macromolecular Rapid Communications, 2016, 37, 1446-1452.                                           | 2.0        | 14          |
| 59 | Mechanical Properties of Aligned Nanotopologies for Directing Cellular Behavior. Advanced<br>Materials Interfaces, 2016, 3, 1600275.                                                            | 1.9        | 23          |
| 60 | Morphology: Virus-SiO2 and Virus-SiO2 -Au Hybrid Particles with Tunable Morphology (Part. Part. Syst.) Tj ETQq0                                                                                 | 0 0 rgBT / | Overlock 10 |
| 61 | Directional nanotopographic gradients: a high-throughput screening platform for cell contact guidance. Scientific Reports, 2015, 5, 16240.                                                      | 1.6        | 55          |
| 62 | Virus‣iO <sub>2</sub> and Virus‣iO <sub>2</sub> â€Au Hybrid Particles with Tunable Morphology.<br>Particle and Particle Systems Characterization, 2015, 32, 43-47.                              | 1.2        | 7           |
| 63 | Ferritin: A Versatile Building Block for Bionanotechnology. Chemical Reviews, 2015, 115, 1653-1701.                                                                                             | 23.0       | 330         |
| 64 | Directed Autonomic Flow: Functional Motility Fluidics. Advanced Materials, 2015, 27, 7401-7406.                                                                                                 | 11.1       | 15          |
| 65 | Biomaterial–stem cell interactions and their impact on stem cell response. RSC Advances, 2014, 4, 53307-53320.                                                                                  | 1.7        | 45          |
| 66 | Ultraâ€Thin Selfâ€Assembled Proteinâ€Polymer Membranes: A New Pore Forming Strategy. Advanced<br>Functional Materials, 2014, 24, 6762-6770.                                                     | 7.8        | 34          |
| 67 | Self-Assembled Membranes: Ultra-Thin Self-Assembled Protein-Polymer Membranes: A New Pore<br>Forming Strategy (Adv. Funct. Mater. 43/2014). Advanced Functional Materials, 2014, 24, 6896-6896. | 7.8        | 0           |
| 68 | Formation of catalytically active gold–polymer microgel hybrids via a controlled in situ reductive process. Journal of Materials Chemistry A, 2013, 1, 13244.                                   | 5.2        | 86          |
| 69 | Self-Assembly Process of Soft Ferritin-PNIPAAm Conjugate Bionanoparticles at Polar–Apolar<br>Interfaces. Langmuir, 2013, 29, 276-284.                                                           | 1.6        | 40          |
| 70 | Morphology control and surface functionalization of protein–SiO2 hybrid capsules. Journal of<br>Materials Chemistry B, 2013, 1, 6427.                                                           | 2.9        | 3           |
| 71 | Aggregationâ€Driven Reversible Formation of Conjugated Polymers in Water. Angewandte Chemie -<br>International Edition, 2013, 52, 1998-2001.                                                    | 7.2        | 47          |
| 72 | Polymer Directed Protein Assemblies. Polymers, 2013, 5, 576-599.                                                                                                                                | 2.0        | 32          |

| #  | Article                                                                                                                                                                                                                              | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 73 | Challenges and advances in the field of self-assembled membranes. Chemical Society Reviews, 2013, 42, 6578.                                                                                                                          | 18.7 | 96        |
| 74 | Crossâ€Linking Density and Temperature Effects on the Selfâ€Assembly of SiO <sub>2</sub> —PNIPAAm<br>Core–Shell Particles at Interfaces. Chemistry - A European Journal, 2013, 19, 5586-5594.                                        | 1.7  | 27        |
| 75 | Surface Initiated Polymerizations via e-ATRP in Pure Water. Polymers, 2013, 5, 1229-1240.                                                                                                                                            | 2.0  | 27        |
| 76 | Hierarchical structures via self-assembling protein-polymer hybrid building blocks. Polymer, 2012, 53, 6045-6052.                                                                                                                    | 1.8  | 19        |
| 77 | Lysozyme–silica hybrid materials: from nanoparticles to capsules and double emulsion mineral capsules. Chemical Communications, 2012, 48, 10210.                                                                                     | 2.2  | 11        |
| 78 | Artificial Leaves via Reproduction of Hierarchical Structures by a Fast Molding and Curing Process.<br>Macromolecular Rapid Communications, 2012, 33, 1300-1303.                                                                     | 2.0  | 7         |
| 79 | Responsive Macroscopic Materials From Selfâ€Assembled Crossâ€Linked SiO <sub>2</sub> â€PNIPAAm<br>Core/Shell Structures. Advanced Functional Materials, 2012, 22, 1724-1731.                                                         | 7.8  | 23        |
| 80 | Microstructures: Responsive Macroscopic Materials From Self-Assembled Cross-Linked SiO2-PNIPAAm<br>Core/Shell Structures (Adv. Funct. Mater. 8/2012). Advanced Functional Materials, 2012, 22, 1723-1723.                            | 7.8  | 3         |
| 81 | Pickering emulsion templated soft capsules by self-assembling cross-linkable ferritin–polymer conjugates. Chemical Communications, 2011, 47, 8376.                                                                                   | 2.2  | 51        |
| 82 | Bionanoparticles and hybrid materials: tailored structural properties, self-assembly, materials and developments in the field. Journal of Materials Chemistry, 2011, 21, 16735.                                                      | 6.7  | 38        |
| 83 | Ultra-sound assisted formation of biodegradable double emulsion capsules from hen egg white. Soft<br>Matter, 2011, 7, 5274.                                                                                                          | 1.2  | 10        |
| 84 | Self-assembly behaviour of conjugated terthiophenesurfactants in water. New Journal of Chemistry, 2011, 35, 558-567.                                                                                                                 | 1.4  | 12        |
| 85 | Synthetic inorganic materials by mimicking biomineralization processes using native and non-native protein functions. Journal of Materials Chemistry, 2011, 21, 18903.                                                               | 6.7  | 35        |
| 86 | Hybrid Capsules via Selfâ€Assembly of Thermoresponsive and Interfacially Active<br>Bionanoparticle–Polymer Conjugates. Advanced Functional Materials, 2011, 21, 2470-2476.                                                           | 7.8  | 72        |
| 87 | Thermoresponsive Capsules: Hybrid Capsules via Self-Assembly of Thermoresponsive and Interfacially<br>Active Bionanoparticle-Polymer Conjugates (Adv. Funct. Mater. 13/2011). Advanced Functional<br>Materials, 2011, 21, 2386-2386. | 7.8  | 1         |
| 88 | Piezoelectric Properties of Nonâ€Polar Block Copolymers. Advanced Materials, 2011, 23, 4047-4052.                                                                                                                                    | 11.1 | 13        |
| 89 | Responsive Vesicles from Dynamic Covalent Surfactants. Angewandte Chemie - International Edition, 2011, 50, 3421-3424.                                                                                                               | 7.2  | 125       |
| 90 | Programmed Morphological Transitions of Multisegment Assemblies by Molecular Chaperone<br>Analogues. Angewandte Chemie - International Edition, 2011, 50, 12285-12289.                                                               | 7.2  | 38        |

| #  | Article                                                                                                                                                                                                                               | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | Introduction of Curvature in Amphipathic Oligothiophenes for Defined Aggregate Formation.<br>Chemistry - A European Journal, 2010, 16, 13417-13428.                                                                                   | 1.7 | 19        |
| 92 | Liposomes with conjugates of a calix[4]arene and a Gd-DOTA derivative on the outside surface; an efficient potential contrast agent for MRI. Chemical Communications, 2010, 46, 4399.                                                 | 2.2 | 27        |
| 93 | Size control and compartmentalization in self-assembled nano-structures of a multisegment amphiphile. Chemical Communications, 2010, 46, 3490.                                                                                        | 2.2 | 23        |
| 94 | Amphiphilic conjugated thiophenes for self-assembling antenna systems in water. Chemical Communications, 2009, , 2163.                                                                                                                | 2.2 | 9         |
| 95 | Dynamic chirality, chirality transfer and aggregation behaviour of dithienylethene switches.<br>Tetrahedron, 2008, 64, 8324-8335.                                                                                                     | 1.0 | 26        |
| 96 | Mechanically Induced Generation of Counterions Inside Surface-Grafted Charged Macromolecular<br>Films: Towards Enhanced Mechanotransduction in Artificial Systems. Angewandte Chemie -<br>International Edition, 2006, 45, 7440-7443. | 7.2 | 57        |