Louis H Philipson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3452785/publications.pdf

Version: 2024-02-01

30070 36028 10,386 143 54 97 citations h-index g-index papers 145 145 145 12254 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	The Longer-Term Benefits and Harms of Glucagon-Like Peptide-1 Receptor Agonists: a Systematic Review and Meta-Analysis. Journal of General Internal Medicine, 2022, 37, 415-438.	2.6	13
2	Longer-term Benefits and Risks of Sodium-Glucose Cotransporter-2 Inhibitors in Type 2 Diabetes: a Systematic Review and Meta-analysis. Journal of General Internal Medicine, 2022, 37, 439-448.	2.6	8
3	ADA/EASD Precision Medicine in Diabetes Initiative: An International Perspective and Future Vision for Precision Medicine in Diabetes. Diabetes Care, 2022, 45, 261-266.	8.6	53
4	Benefit of Continuous Glucose Monitoring in Reducing Hypoglycemia Is Sustained Through 12 Months of Use Among Older Adults with Type 1 Diabetes. Diabetes Technology and Therapeutics, 2022, 24, 424-434.	4.4	27
5	Precision diabetes: Lessons learned from <scp>maturityâ€onset</scp> diabetes of the young (MODY). Journal of Diabetes Investigation, 2022, 13, 1465-1471.	2.4	14
6	Approach to the Patient with MODY-Monogenic Diabetes. Journal of Clinical Endocrinology and Metabolism, 2021, 106, 237-250.	3.6	65
7	The demise of islet allotransplantation in the United States: A call for an urgent regulatory update. American Journal of Transplantation, 2021, 21, 1365-1375.	4.7	33
8	Monogenic Diabetes Mellitus: Neonatal Diabetes and Maturity-Onset Diabetes of the Young. , 2021, , 279-298.		3
9	Post-Hoc Analysis of a Randomized, Double Blind, Prospective Study at the University of Chicago: Additional Standardizations of Trial Protocol are Needed to Evaluate the Effect of a CXCR1/2 Inhibitor in Islet Allotransplantation. Cell Transplantation, 2021, 30, 096368972110017.	2.5	8
10	Transparent, Compliant 3D Mesostructures for Precise Evaluation of Mechanical Characteristics of Organoids. Advanced Materials, 2021, 33, e2100026.	21.0	23
11	3D Microstructures: Transparent, Compliant 3D Mesostructures for Precise Evaluation of Mechanical Characteristics of Organoids (Adv. Mater. 25/2021). Advanced Materials, 2021, 33, 2170196.	21.0	O
12	Diabetes With Multiple Autoimmune and Inflammatory Conditions Linked to an Activating SKAP2 Mutation. Diabetes Care, 2021, 44, 1816-1825.	8.6	5
13	Integrated Analysis of the Pancreas and Islets Reveals Unexpected Findings in Human Male With Type 1 Diabetes. Journal of the Endocrine Society, 2021, 5, bvab162.	0.2	O
14	Developmental defects and impaired network excitability in a cerebral organoidÂmodel ofÂKCNJ11 p.V59M-related neonatal diabetes. Scientific Reports, 2021, 11, 21590.	3.3	7
15	Insight on Diagnosis and Treatment From Over a Decade of Research Through the University of Chicago Monogenic Diabetes Registry. Frontiers in Clinical Diabetes and Healthcare, 2021, 2, .	0.8	5
16	307.5: Modified Approach Allowed for Improved Islet Allotransplantation Into Pre-vascularized Sernova Cell PouchTM Device - Preliminary Results of the Phase I/II Clinical Trial at University of Chicago. Transplantation, 2021, 105, S25-S25.	1.0	5
17	Islets Transplantation at a Crossroads - Need for Urgent Regulatory Update in the United States: Perspective Presented During the Scientific Sessions 2021 at the American Diabetes Association Congress. Frontiers in Endocrinology, 2021, 12, 789526.	3.5	4
18	Harnessing heterogeneity in type 2 diabetes mellitus. Nature Reviews Endocrinology, 2020, 16, 79-80.	9.6	25

#	Article	IF	CITATIONS
19	Monogenic Diabetes: From Genetic Insights to Population-Based Precision in Care. Reflections From a ⟨i⟩Diabetes Care⟨ i⟩ Editors' Expert Forum. Diabetes Care, 2020, 43, 3117-3128.	8.6	65
20	Effect of Continuous Glucose Monitoring on Hypoglycemia in Older Adults With Type 1 Diabetes. JAMA - Journal of the American Medical Association, 2020, 323, 2397.	7.4	191
21	Exenatide extended release in patients with type 1 diabetes with and without residual insulin production. Diabetes, Obesity and Metabolism, 2020, 22, 2045-2054.	4.4	13
22	Precision medicine in diabetes: a Consensus Report from the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetologia, 2020, 63, 1671-1693.	6.3	102
23	Precision Medicine in Diabetes: A Consensus Report From the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care, 2020, 43, 1617-1635.	8.6	204
24	Integrated Pancreatic Blood Flow: Bidirectional Microcirculation Between Endocrine and Exocrine Pancreas. Diabetes, 2020, 69, 1439-1450.	0.6	52
25	GCK-MODY in the US Monogenic Diabetes Registry: Description of 27 unpublished variants. Diabetes Research and Clinical Practice, 2019, 151, 231-236.	2.8	14
26	latrogenic Hyperinsulinemia, Not Hyperglycemia, Drives Insulin Resistance in Type 1 Diabetes as Revealed by Comparison With GCK-MODY (MODY2). Diabetes, 2019, 68, 1565-1576.	0.6	31
27	Management and pregnancy outcomes of women with GCK-MODY enrolled in the US Monogenic Diabetes Registry. Acta Diabetologica, 2019, 56, 405-411.	2.5	40
28	\hat{l}_{\pm} Cell Function and Gene Expression Are Compromised in Type 1 Diabetes. Cell Reports, 2018, 22, 2667-2676.	6.4	152
29	Multi-level supervision and modification of artificial pancreas control system. Computers and Chemical Engineering, 2018, 112, 57-69.	3.8	10
30	Early Intensive Insulin Use May Preserve \hat{l}^2 -Cell Function in Neonatal Diabetes Due to Mutations in the Proinsulin Gene. Journal of the Endocrine Society, 2018, 2, 1-8.	0.2	13
31	Pancreatic Histopathology of Human Monogenic Diabetes Due to Causal Variants in KCNJ11, HNF1A, GATA6, and LMNA. Journal of Clinical Endocrinology and Metabolism, 2018, 103, 35-45.	3.6	17
32	Simultaneous Real-Time Measurement of the \hat{l}^2 -Cell Membrane Potential and Ca2+ Influx to Assess the Role of Potassium Channels on \hat{l}^2 -Cell Function. Methods in Molecular Biology, 2018, 1684, 73-84.	0.9	2
33	Comparative evaluation of simple indices using a single fasting blood sample to estimate beta cell function after islet transplantation. American Journal of Transplantation, 2018, 18, 990-997.	4.7	12
34	<i>FOXP3</i> mutations causing earlyâ€onset insulinâ€requiring diabetes but without other features of immune dysregulation, polyendocrinopathy, enteropathy, Xâ€linked syndrome. Pediatric Diabetes, 2018, 19, 388-392.	2.9	25
35	Monogenic Diabetes in Children and Adolescents: Recognition and Treatment Options. Current Diabetes Reports, 2018, 18, 58.	4.2	67
36	Precision medicine in KCNJ11 permanent neonatal diabetes. Lancet Diabetes and Endocrinology,the, 2018, 6, 594-595.	11.4	2

#	Article	IF	Citations
37	Human islets expressing HNF1A variant have defective \hat{l}^2 cell transcriptional regulatory networks. Journal of Clinical Investigation, 2018, 129, 246-251.	8.2	65
38	Case Report: Preservation of Reduced Numbers of Insulin-Positive Cells in Sulfonylurea-Unresponsive <i>KCNJ11</i> -related Diabetes. Journal of Clinical Endocrinology and Metabolism, 2017, 102, jc.2016-2826.	3.6	24
39	Diabetes Presentation in Infancy: High Risk of Diabetic Ketoacidosis. Diabetes Care, 2017, 40, e147-e148.	8.6	44
40	Correlative imaging across microscopy platforms using the fast and accurate relocation of microscopic experimental regions (FARMER) method. Review of Scientific Instruments, 2017, 88, 053702.	1.3	4
41	A Clinical Guide to Monogenic Diabetes. , 2016, , 21-30.		14
42	Growth Hormone-Releasing Hormone in Diabetes. Frontiers in Endocrinology, 2016, 7, 129.	3.5	32
43	The Brain–to–Pancreatic Islet Neuronal Map Reveals Differential Glucose Regulation From Distinct Hypothalamic Regions. Diabetes, 2016, 65, 2711-2723.	0.6	73
44	GCK-MODY in the US National Monogenic Diabetes Registry: frequently misdiagnosed and unnecessarily treated. Acta Diabetologica, 2016, 53, 703-708.	2.5	59
45	A Transient Metabolic Recovery from Early Life Glucose Intolerance in Cystic Fibrosis Ferrets Occurs During Pancreatic Remodeling. Endocrinology, 2016, 157, 1852-1865.	2.8	37
46	Outcomes of Pancreatic Islet Allotransplantation Using the Edmonton Protocol at the University of Chicago. Transplantation Direct, 2016, 2, e105.	1.6	17
47	TCF1 links GIPR signaling to the control of beta cell function and survival. Nature Medicine, 2016, 22, 84-90.	30.7	108
48	Pancreatic Beta Cell G-Protein Coupled Receptors and Second Messenger Interactions: A Systems Biology Computational Analysis. PLoS ONE, 2016, 11, e0152869.	2.5	36
49	Insulin Dosing in Pediatric Diabetic Ketoacidosis. JAMA - Journal of the American Medical Association, 2015, 313, 2274.	7.4	0
50	Chronic hyperglycemia downregulates GLP-1 receptor signaling in pancreatic \hat{l}^2 -cells via protein kinase A. Molecular Metabolism, 2015, 4, 265-276.	6.5	54
51	Loss of Liver Kinase B1 (LKB1) in Beta Cells Enhances Glucose-stimulated Insulin Secretion Despite Profound Mitochondrial Defects. Journal of Biological Chemistry, 2015, 290, 20934-20946.	3.4	36
52	PGC-1 coactivators in \hat{I}^2 -cells regulate lipid metabolism and are essential for insulin secretion coupled to fatty acids. Molecular Metabolism, 2015, 4, 811-822.	6.5	46
53	Donald F. Steiner MD, 1930–2014: Discoverer of proinsulin. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 940-941.	7.1	3
54	A Review of the Mental Health Issues of Diabetes Conference. Diabetes Care, 2015, 38, 333-338.	8.6	59

#	Article	IF	CITATIONS
55	Continued lessons from the <i>INS </i> i>gene: an intronic mutation causing diabetes through a novel mechanism. Journal of Medical Genetics, 2015, 52, 612-616.	3.2	25
56	Role of Noninsulin Therapies Alone or in Combination in Chromosome 6q24-Related Transient Neonatal Diabetes: Sulfonylurea Improves but Does Not Always Normalize Insulin Secretion. Diabetes Care, 2015, 38, e86-e87.	8.6	25
57	Age at the time of sulfonylurea initiation influences treatment outcomes in KCNJ11-related neonatal diabetes. Diabetologia, 2015, 58, 1430-1435.	6.3	69
58	An online monogenic diabetes discussion group: supporting families and fueling new research. Translational Research, 2015, 166, 425-431.	5.0	6
59	Update on Diabetes Classification. Medical Clinics of North America, 2015, 99, 1-16.	2.5	114
60	Dynamin 2 regulates biphasic insulin secretion and plasma glucose homeostasis. Journal of Clinical Investigation, 2015, 125, 4026-4041.	8.2	36
61	MODY3 and Pancreatic Transplant: Making a Case for Universal MODY Screening Before Transplant. AACE Clinical Case Reports, 2015, 1, e123-e126.	1.1	1
62	Quantifying Insulin Sensitivity and Entero-Insular Responsiveness to Hyper- and Hypoglycemia in Ferrets. PLoS ONE, 2014, 9, e90519.	2.5	5
63	Genetic Complexity in a <i>Drosophila</i> Model of Diabetes-Associated Misfolded Human Proinsulin. Genetics, 2014, 196, 539-555.	2.9	30
64	Microcephaly, epilepsy, and neonatal diabetes due to compound heterozygous mutations in <i>IER3IP1 < i: insights into the natural history of a rare disorder. Pediatric Diabetes, 2014, 15, 252-256.</i>	2.9	38
65	The Mental Health Comorbidities of Diabetes. JAMA - Journal of the American Medical Association, 2014, 312, 691.	7.4	248
66	Routine Depression Screening for Patients With Diabetesâ€"Reply. JAMA - Journal of the American Medical Association, 2014, 312, 2413.	7.4	2
67	The Role of \hat{l}^2 Cell Glucagon-like Peptide-1 Signaling in Glucose Regulation and Response to Diabetes Drugs. Cell Metabolism, 2014, 19, 1050-1057.	16.2	139
68	Sulfonylurea Treatment Before Genetic Testing in Neonatal Diabetes: Pros and Cons. Journal of Clinical Endocrinology and Metabolism, 2014, 99, E2709-E2714.	3.6	54
69	Insulin regulates carboxypeptidase E by modulating translation initiation scaffolding protein eIF4G1 in pancreatic \hat{l}^2 cells. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E2319-28.	7.1	42
70	Cost-Effectiveness of MODY Genetic Testing: Translating Genomic Advances Into Practical Health Applications. Diabetes Care, 2014, 37, 202-209.	8.6	114
71	Type 2 Diabetes and Congenital Hyperinsulinism Cause DNA Double-Strand Breaks and p53 Activity in \hat{l}^2 Cells. Cell Metabolism, 2014, 19, 109-121.	16.2	123
72	Lean versus obese diabetes mellitus patients in the United States minority population. Journal of Diabetes and Its Complications, 2014, 28, 500-505.	2.3	48

#	Article	IF	CITATIONS
73	Distribution of directional change as a signature of complex dynamics. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 19689-19694.	7.1	105
74	Neonatal diabetes: the brain comes into focus. Lancet Diabetes and Endocrinology, the, 2013, 1, 167-168.	11.4	0
75	Genome wide association studies for diabetes: perspective on results and challenges. Pediatric Diabetes, 2013, 14, 90-96.	2.9	26
76	Intracellular transport of insulin granules is a subordinated random walk. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4911-4916.	7.1	296
77	β-Cell–Specific Protein Kinase A Activation Enhances the Efficiency of Glucose Control by Increasing Acute-Phase Insulin Secretion. Diabetes, 2013, 62, 1527-1536.	0.6	58
78	Transgenic zebrafish model of the C43G human insulin gene mutation. Journal of Diabetes Investigation, 2013, 4, 157-167.	2.4	12
79	Metastatic Insulinoma Following Resection of Nonsecreting Pancreatic Islet Cell Tumor. Journal of Investigative Medicine High Impact Case Reports, 2013, 1, 232470961247327.	0.6	4
80	A computational systems analysis of factors regulating \hat{l}_{\pm} cell glucagon secretion. Islets, 2012, 4, 262-283.	1.8	11
81	Genetics and pathophysiology of neonatal diabetes mellitus. Journal of Diabetes Investigation, 2011, 2, 158-169.	2.4	81
82	Who should have genetic testing for maturityâ€onset diabetes of the young?. Clinical Endocrinology, 2011, 75, 422-426.	2.4	68
83	Coupling of metabolic, second messenger pathways and insulin granule dynamics in pancreatic beta-cells: A computational analysis. Progress in Biophysics and Molecular Biology, 2011, 107, 293-303.	2.9	21
84	Neonatal Diabetes: An Expanding List of Genes Allows for Improved Diagnosis and Treatment. Current Diabetes Reports, 2011, 11, 519-532.	4.2	99
85	Creation of the Web-Based University of Chicago Monogenic Diabetes Registry: Using Technology to Facilitate Longitudinal Study of Rare Subtypes of Diabetes. Journal of Diabetes Science and Technology, 2011, 5, 879-886.	2.2	23
86	The Cost-Effectiveness of Personalized Genetic Medicine. Diabetes Care, 2011, 34, 622-627.	8.6	80
87	Update in neonatal diabetes. Current Opinion in Endocrinology, Diabetes and Obesity, 2010, 17, 13-19.	2.3	37
88	Clinical and molecular genetics of neonatal diabetes due to mutations in the insulin gene. Reviews in Endocrine and Metabolic Disorders, 2010, 11, 205-215.	5.7	123
89	Disruption of the clock components CLOCK and BMAL1 leads to hypoinsulinaemia and diabetes. Nature, 2010, 466, 627-631.	27.8	1,261
90	Calcium-activated and voltage-gated potassium channels of the pancreatic islet impart distinct and complementary roles during secretagogue induced electrical responses. Journal of Physiology, 2010, 588, 3525-3537.	2.9	62

#	Article	IF	Citations
91	Genetic Testing in Diabetes Mellitus. , 2010, , 17-25.		3
92	Conditional Gene Targeting in Mouse Pancreatic β-Cells. Diabetes, 2010, 59, 3090-3098.	0.6	288
93	In vitro processing and secretion of mutant insulin proteins that cause permanent neonatal diabetes. American Journal of Physiology - Endocrinology and Metabolism, 2010, 298, E403-E410.	3.5	72
94	Response to Jentsch etÂal Cell Metabolism, 2010, 12, 310.	16.2	0
95	Neonatal diabetes mellitus: A model for personalized medicine. Trends in Endocrinology and Metabolism, 2010, 21, 464-472.	7.1	70
96	Blood Sugar Measurement in Zebrafish Reveals Dynamics of Glucose Homeostasis. Zebrafish, 2010, 7, 205-213.	1.1	172
97	Tooth Discoloration in Patients With Neonatal Diabetes After Transfer Onto Glibenclamide: A previously unreported side effect. Diabetes Care, 2009, 32, 1428-1430.	8.6	39
98	The α-Cell Conundrum: ATP-Sensitive K+ Channels and Glucose Sensing. Diabetes, 2009, 58, 304-306.	0.6	12
99	Leptin Deficiency and Beta-Cell Dysfunction Underlie Type 2 Diabetes in Compound Akt Knockout Mice. Molecular and Cellular Biology, 2009, 29, 3151-3162.	2.3	54
100	The Granular Chloride Channel ClC-3 Is Permissive for Insulin Secretion. Cell Metabolism, 2009, 10, 316-323.	16.2	58
101	A Nanoporous, Transparent Microcontainer for Encapsulated Islet Therapy. Journal of Diabetes Science and Technology, 2009, 3, 297-303.	2.2	17
102	Diagnosis and treatment of neonatal diabetes: an United States experienceâ€. Pediatric Diabetes, 2008, 9, 450-459.	2.9	115
103	Reversible translocation of EYFP-tagged STIM1 is coupled to calcium influx in insulin secreting \hat{I}^2 -cells. Cell Calcium, 2008, 44, 533-544.	2.4	49
104	Single Particle Image Reconstruction of the Human Recombinant Kv2.1 Channel. Biophysical Journal, 2008, 94, 2106-2114.	0.5	19
105	When BAD Is Good for \hat{l}^2 Cells. Cell Metabolism, 2008, 7, 280-281.	16.2	5
106	The chemistrode: A droplet-based microfluidic device for stimulation and recording with high temporal, spatial, and chemical resolution. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 16843-16848.	7.1	208
107	Mutations in the Insulin Gene Can Cause MODY and Autoantibody-Negative Type 1 Diabetes. Diabetes, 2008, 57, 1131-1135.	0.6	184
108	Insulin Mutation Screening in 1,044 Patients With Diabetes. Diabetes, 2008, 57, 1034-1042.	0.6	347

#	Article	IF	Citations
109	Ion Channels and Insulin Secretion. , 2008, , 91-110.		2
110	Modulation of the Pancreatic Islet \hat{l}^2 -Cell-delayed Rectifier Potassium Channel Kv2.1 by the Polyunsaturated Fatty Acid Arachidonate. Journal of Biological Chemistry, 2007, 282, 7442-7449.	3.4	51
111	Insulin gene mutations as a cause of permanent neonatal diabetes. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 15040-15044.	7.1	494
112	Kv2.1 Ablation Alters Glucose-Induced Islet Electrical Activity, Enhancing Insulin Secretion. Cell Metabolism, 2007, 6, 229-235.	16.2	157
113	Recovery of Islet Â-Cell Function in Streptozotocin- Induced Diabetic Mice: An Indirect Role for the Spleen. Diabetes, 2006, 55, 3256-3263.	0.6	83
114	Reversal of Diabetes in Non-Obese Diabetic Mice Without Spleen Cell-Derived Cell Regeneration. Science, 2006, 311, 1774-1775.	12.6	120
115	Cold climate genes and the prevalence of type 2 diabetes mellitus. Medical Hypotheses, 2006, 67, 1034-1041.	1.5	25
116	Functional MR Microimaging of Pancreatic Î ² -Cell Activation. Cell Transplantation, 2006, 15, 195-203.	2.5	63
117	Reactive species and early manifestation of insulin resistance in type 2 diabetes. Diabetes, Obesity and Metabolism, 2006, 8, 136-145.	4.4	135
118	Reactive Species, Cellular Repair and Risk Factors in the Onset of Type 2 Diabetes Mellitus: Review and Hypothesis. Current Diabetes Reviews, 2006, 2, 241-259.	1.3	31
119	Response to Comment on Chong et al. on Diabetes Reversal in NOD Mice. Science, 2006, 314, 1243b-1243b.	12.6	5
120	Oxidative Reactive Species in Cell Injury: Mechanisms in Diabetes Mellitus and Therapeutic Approaches. Annals of the New York Academy of Sciences, 2005, 1066, 136-151.	3.8	95
121	Delayed-rectifier (KV2.1) regulation of pancreatic \hat{l}^2 -cell calcium responses to glucose: inhibitor specificity and modeling. American Journal of Physiology - Endocrinology and Metabolism, 2005, 289, E578-E585.	3.5	43
122	Inositol $(1,4,5)$ -Trisphosphate Dynamics and Intracellular Calcium Oscillations in Pancreatic Â-Cells. Diabetes, 2005, 54, 3073-3081.	0.6	48
123	5-Amino-imidazole carboxamide riboside acutely potentiates glucose-stimulated insulin secretion from mouse pancreatic islets by KATP channel-dependent and -independent pathways. Biochemical and Biophysical Research Communications, 2005, 330, 1073-1079.	2.1	45
124	Does the Glucose-Dependent Insulin Secretion Mechanism Itself Cause Oxidative Stress in Pancreatic Â-Cells?. Diabetes, 2004, 53, 1942-1948.	0.6	139
125	Direct imaging shows that insulin granule exocytosis occurs by complete vesicle fusion. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 9266-9271.	7.1	88
126	Small-Conductance Calcium-Activated K+ Channels Are Expressed in Pancreatic Islets and Regulate Glucose Responses. Diabetes, 2003, 52, 2000-2006.	0.6	67

#	Article	IF	Citations
127	Visualizing Superoxide Production in Normal and Diabetic Rat Islets of Langerhans. Journal of Biological Chemistry, 2003, 278, 9796-9801.	3.4	208
128	Insulin Secretory Deficiency and Glucose Intolerance in Rab3A Null Mice. Journal of Biological Chemistry, 2003, 278, 9715-9721.	3.4	110
129	Mutational analysis of predicted interactions between the catalytic and P domains of prohormone convertase 3 (PC3/PC1). Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 5622-5627.	7.1	21
130	Modeling of Ca $<$ sup $>2+sup>flux in pancreatic \hat{l}^2-cells: role of the plasma membrane and intracellular stores. American Journal of Physiology - Endocrinology and Metabolism, 2003, 285, E138-E154.$	3.5	115
131	β-Agonists and metabolism. Journal of Allergy and Clinical Immunology, 2002, 110, S313-S317.	2.9	90
132	Overexpression of Bcl-x $<$ sub $>$ L $<$ /sub $>$ in \hat{I}^2 -cells prevents cell death but impairs mitochondrial signal for insulin secretion. American Journal of Physiology - Endocrinology and Metabolism, 2000, 278, E340-E351.	3.5	99
133	The Status of Voltage-Dependent Calcium Channels in $\hat{l}\pm 1$ EKnock-Out Mice. Journal of Neuroscience, 2000, 20, 8566-8571.	3.6	151
134	\hat{l}^2 -Cell Ion Channels: Keys to Endodermal Excitability. Hormone and Metabolic Research, 1999, 31, 455-461.	1.5	25
135	Characterization of a Ca2+ Release-activated Nonselective Cation Current Regulating Membrane Potential and [Ca2+] Oscillations in Transgenically Derived \hat{I}^2 -Cells. Journal of Biological Chemistry, 1998, 273, 10402-10410.	3.4	104
136	Defective Pancreatic \hat{l}^2 -Cell Glycolytic Signaling in Hepatocyte Nuclear Factor- $1\hat{l}_{\pm}$ -deficient Mice. Journal of Biological Chemistry, 1998, 273, 24457-24464.	3.4	149
137	Selective G-Protein Regulation of Neuronal Calcium Channels. Journal of Neuroscience, 1996, 16, 4617-4624.	3.6	63
138	Expression and Function of Pancreatic \hat{l}^2 -Cell Delayed Rectifier K+ Channels. Journal of Biological Chemistry, 1996, 271, 32241-32246.	3.4	111
139	Functional Expression of an Epitope-tagged G protein-coupled K+ Channel (GIRK1). Journal of Biological Chemistry, 1995, 270, 14604-14610.	3.4	23
140	Human G-Protein-Coupled Inwardly Rectifying Potassium Channel (GIRK1) Gene (KCNJ3): Localization to Chromosome 2 and Identification of a Simple Tandem Repeat Polymorphism. Genomics, 1994, 21, 254-256.	2.9	31
141	A small k+ channel looms large. Trends in Pharmacological Sciences, 1992, 13, 8-11.	8.7	26
142	Regulation of Glycosaminoglycan Synthesis by Thyroid Hormone in Vitro. Journal of Clinical Investigation, 1982, 70, 1066-1073.	8.2	108
143	Preliminary characterization of a xylose acceptor prepared by hydrogen fluoride treatment of proteoglycan core protein. Biochemical and Biophysical Research Communications, 1980, 92, 618-623.	2.1	42