Raoul J De Groot

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3452592/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthetic <i>O</i> -Acetylated Sialosides and their Acetamido-deoxy Analogues as Probes for Coronaviral Hemagglutinin-esterase Recognition. Journal of the American Chemical Society, 2022, 144, 424-435.	13.7	4
2	Synthetic <i>O</i> -Acetyl- <i>N</i> -glycolylneuraminic Acid Oligosaccharides Reveal Host-Associated Binding Patterns of Coronaviral Glycoproteins. ACS Infectious Diseases, 2022, 8, 1041-1050.	3.8	3
3	Antigenic structure of the human coronavirus OC43 spike reveals exposed and occluded neutralizing epitopes. Nature Communications, 2022, 13, .	12.8	12
4	Synthetic O-acetylated sialosides facilitate functional receptor identification for human respiratory viruses. Nature Chemistry, 2021, 13, 496-503.	13.6	31
5	Coronavirus hemagglutinin-esterase and spike proteins coevolve for functional balance and optimal virion avidity. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 25759-25770.	7.1	48
6	Inhibition of the integrated stress response by viral proteins that block p-elF2–elF2B association. Nature Microbiology, 2020, 5, 1361-1373.	13.3	39
7	Dissecting distinct proteolytic activities of FMDV Lpro implicates cleavage and degradation of RLR signaling proteins, not its delSGylase/DUB activity, in type I interferon suppression. PLoS Pathogens, 2020, 16, e1008702.	4.7	26
8	Cryo-EM structure of coronavirus-HKU1 haemagglutinin esterase reveals architectural changes arising from prolonged circulation in humans. Nature Communications, 2020, 11, 4646.	12.8	24
9	Small molecule ISRIB suppresses the integrated stress response within a defined window of activation. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2097-2102.	7.1	163
10	Human coronaviruses OC43 and HKU1 bind to 9- <i>O</i> -acetylated sialic acids via a conserved receptor-binding site in spike protein domain A. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2681-2690.	7.1	335
11	Structural basis for human coronavirus attachment to sialic acid receptors. Nature Structural and Molecular Biology, 2019, 26, 481-489.	8.2	475
12	Essential Role of Enterovirus 2A Protease in Counteracting Stress Granule Formation and the Induction of Type I Interferon. Journal of Virology, 2019, 93, .	3.4	47
13	Foot-and-Mouth Disease Virus Leader Protease Cleaves G3BP1 and G3BP2 and Inhibits Stress Granule Formation. Journal of Virology, 2019, 93, .	3.4	72
14	Role of enhanced receptor engagement in the evolution of a pandemic acute hemorrhagic conjunctivitis virus. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 397-402.	7.1	43
15	Kinetic analysis of the influenza A virus HA/NA balance reveals contribution of NA to virus-receptor binding and NA-dependent rolling on receptor-containing surfaces. PLoS Pathogens, 2018, 14, e1007233.	4.7	101
16	Mutation of the Second Sialic Acid-Binding Site, Resulting in Reduced Neuraminidase Activity, Preceded the Emergence of H7N9 Influenza A Virus. Journal of Virology, 2017, 91, .	3.4	44
17	Betacoronavirus Adaptation to Humans Involved Progressive Loss of Hemagglutinin-Esterase Lectin Activity. Cell Host and Microbe, 2017, 21, 356-366.	11.0	83
18	Identification of sialic acid-binding function for the Middle East respiratory syndrome coronavirus spike glycoprotein. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8508-E8517.	7.1	272

RAOUL J DE GROOT

#	Article	IF	CITATIONS
19	Middle East Respiratory Coronavirus Accessory Protein 4a Inhibits PKR-Mediated Antiviral Stress Responses. PLoS Pathogens, 2016, 12, e1005982.	4.7	161
20	Coronavirus receptor switch explained from the stereochemistry of protein–carbohydrate interactions and a single mutation. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E3111-9.	7.1	38
21	Complexity and Diversity of the Mammalian Sialome Revealed by Nidovirus Virolectins. Cell Reports, 2015, 11, 1966-1978.	6.4	62
22	9-O-Acetylation of sialic acids is catalysed by CASD1 via a covalent acetyl-enzyme intermediate. Nature Communications, 2015, 6, 7673.	12.8	90
23	Commentary: Middle East Respiratory Syndrome Coronavirus (MERS-CoV): Announcement of the Coronavirus Study Group. Journal of Virology, 2013, 87, 7790-7792.	3.4	1,012
24	The Murine Coronavirus Hemagglutinin-esterase Receptor-binding Site: A Major Shift in Ligand Specificity through Modest Changes in Architecture. PLoS Pathogens, 2012, 8, e1002492.	4.7	46
25	The influenza A virus hemagglutinin glycosylation state affects receptor-binding specificity. Virology, 2010, 403, 17-25.	2.4	108
26	Attachment of Mouse Hepatitis Virus to O-Acetylated Sialic Acid Is Mediated by Hemagglutinin-Esterase and Not by the Spike Protein. Journal of Virology, 2010, 84, 8970-8974.	3.4	52
27	Structural basis for ligand and substrate recognition by torovirus hemagglutinin esterases. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 15897-15902.	7.1	46
28	Structure of coronavirus hemagglutinin-esterase offers insight into corona and influenza virus evolution. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 9065-9069.	7.1	221
29	Structure, function and evolution of the hemagglutinin-esterase proteins of corona- and toroviruses. Glycoconjugate Journal, 2006, 23, 59-72.	2.7	129
30	Nidovirus Sialate-O-Acetylesterases. Journal of Biological Chemistry, 2005, 280, 6933-6941.	3.4	71
31	The Genome Organization of the Nidovirales: Similarities and Differences between Arteri-, Toro-, and Coronaviruses. Seminars in Virology, 1997, 8, 33-47.	3.9	244
32	Molecular Biology and Evolution of Toroviruses. , 0, , 133-146.		3