Raoul J De Groot

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3452592/raoul-j-de-groot-publications-by-year.pdf

Version: 2024-04-19

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

3,056 30 24 35 h-index g-index citations papers 3,666 10.9 35 5.04 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
30	Synthetic O-acetylated sialosides facilitate functional receptor identification for human respiratory viruses. <i>Nature Chemistry</i> , 2021 , 13, 496-503	17.6	10
29	Coronavirus hemagglutinin-esterase and spike proteins coevolve for functional balance and optimal virion avidity. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 25759-25770	11.5	24
28	Inhibition of the integrated stress response by viral proteins that block p-eIF2-eIF2B association. <i>Nature Microbiology</i> , 2020 , 5, 1361-1373	26.6	17
27	Dissecting distinct proteolytic activities of FMDV Lpro implicates cleavage and degradation of RLR signaling proteins, not its deISGylase/DUB activity, in type I interferon suppression. <i>PLoS Pathogens</i> , 2020 , 16, e1008702	7.6	16
26	Cryo-EM structure of coronavirus-HKU1 haemagglutinin esterase reveals architectural changes arising from prolonged circulation in humans. <i>Nature Communications</i> , 2020 , 11, 4646	17.4	16
25	Small molecule ISRIB suppresses the integrated stress response within a defined window of activation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 2097-2102	11.5	79
24	Human coronaviruses OC43 and HKU1 bind to 9acetylated sialic acids via a conserved receptor-binding site in spike protein domain A. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2019 , 116, 2681-2690	11.5	242
23	Structural basis for human coronavirus attachment to sialic acid receptors. <i>Nature Structural and Molecular Biology</i> , 2019 , 26, 481-489	17.6	341
22	Essential Role of Enterovirus 2A Protease in Counteracting Stress Granule Formation and the Induction of Type I Interferon. <i>Journal of Virology</i> , 2019 , 93,	6.6	26
21	Foot-and-Mouth Disease Virus Leader Protease Cleaves G3BP1 and G3BP2 and Inhibits Stress Granule Formation. <i>Journal of Virology</i> , 2019 , 93,	6.6	42
20	Role of enhanced receptor engagement in the evolution of a pandemic acute hemorrhagic conjunctivitis virus. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2018 , 115, 397-402	11.5	32
19	Kinetic analysis of the influenza A virus HA/NA balance reveals contribution of NA to virus-receptor binding and NA-dependent rolling on receptor-containing surfaces. <i>PLoS Pathogens</i> , 2018 , 14, e100723	3 ^{7.6}	61
18	Mutation of the Second Sialic Acid-Binding Site, Resulting in Reduced Neuraminidase Activity, Preceded the Emergence of H7N9 Influenza A Virus. <i>Journal of Virology</i> , 2017 , 91,	6.6	33
17	Betacoronavirus Adaptation to Humans Involved Progressive Loss of Hemagglutinin-Esterase Lectin Activity. <i>Cell Host and Microbe</i> , 2017 , 21, 356-366	23.4	56
16	Identification of sialic acid-binding function for the Middle East respiratory syndrome coronavirus spike glycoprotein. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2017 , 114, E8508-E8517	11.5	216
15	Middle East Respiratory Coronavirus Accessory Protein 4a Inhibits PKR-Mediated Antiviral Stress Responses. <i>PLoS Pathogens</i> , 2016 , 12, e1005982	7.6	111
14	Coronavirus receptor switch explained from the stereochemistry of protein-carbohydrate interactions and a single mutation. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2016 , 113, E3111-9	11.5	31

LIST OF PUBLICATIONS

13	Complexity and Diversity of the Mammalian Sialome Revealed by Nidovirus Virolectins. <i>Cell Reports</i> , 2015 , 11, 1966-78	10.6	47
12	9-O-Acetylation of sialic acids is catalysed by CASD1 via a covalent acetyl-enzyme intermediate. <i>Nature Communications</i> , 2015 , 6, 7673	17.4	67
11	Middle East respiratory syndrome coronavirus (MERS-CoV): announcement of the Coronavirus Study Group. <i>Journal of Virology</i> , 2013 , 87, 7790-2	6.6	796
10	The murine coronavirus hemagglutinin-esterase receptor-binding site: a major shift in ligand specificity through modest changes in architecture. <i>PLoS Pathogens</i> , 2012 , 8, e1002492	7.6	38
9	Attachment of mouse hepatitis virus to O-acetylated sialic acid is mediated by hemagglutinin-esterase and not by the spike protein. <i>Journal of Virology</i> , 2010 , 84, 8970-4	6.6	44
8	The influenza A virus hemagglutinin glycosylation state affects receptor-binding specificity. <i>Virology</i> , 2010 , 403, 17-25	3.6	89
7	Structural basis for ligand and substrate recognition by torovirus hemagglutinin esterases. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2009 , 106, 15897-902	11.5	41
6	Structure of coronavirus hemagglutinin-esterase offers insight into corona and influenza virus evolution. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 9065-9	11.5	176
5	Structure, function and evolution of the hemagglutinin-esterase proteins of corona- and toroviruses. <i>Glycoconjugate Journal</i> , 2006 , 23, 59-72	3	106
4	Nidovirus sialate-O-acetylesterases: evolution and substrate specificity of coronaviral and toroviral receptor-destroying enzymes. <i>Journal of Biological Chemistry</i> , 2005 , 280, 6933-41	5.4	67
3	The Genome Organization of the Nidovirales: Similarities and Differences between Arteri-, Toro-, and Coronaviruses. <i>Seminars in Virology</i> , 1997 , 8, 33-47		218
2	Molecular Biology and Evolution of Toroviruses133-146		2
1	Coronavirus hemagglutinin-esterase and spike proteins co-evolve for functional balance and optimal virion avidity		3