Matthias Rottmann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3452518/publications.pdf

Version: 2024-02-01

53 papers 4,404 citations

30 h-index 55 g-index

57 all docs

57 docs citations

57 times ranked

5666 citing authors

#	Article	IF	CITATIONS
1	Spiroindolones, a Potent Compound Class for the Treatment of Malaria. Science, 2010, 329, 1175-1180.	12.6	1,031
2	Spirotetrahydro \hat{l}^2 -Carbolines (Spiroindolones): A New Class of Potent and Orally Efficacious Compounds for the Treatment of Malaria. Journal of Medicinal Chemistry, 2010, 53, 5155-5164.	6.4	381
3	Targeting Plasmodium PI(4)K to eliminate malaria. Nature, 2013, 504, 248-253.	27.8	377
4	Imaging of <i>Plasmodium</i> Liver Stages to Drive Next-Generation Antimalarial Drug Discovery. Science, 2011, 334, 1372-1377.	12.6	308
5	Heterochromatin Protein 1 Secures Survival and Transmission of Malaria Parasites. Cell Host and Microbe, 2014, 16, 165-176.	11.0	225
6	Differential Expression of var Gene Groups Is Associated with Morbidity Caused by Plasmodium falciparum Infection in Tanzanian Children. Infection and Immunity, 2006, 74, 3904-3911.	2.2	180
7	Lagunamides A and B: Cytotoxic and Antimalarial Cyclodepsipeptides from the Marine Cyanobacterium <i>Lyngbya majuscula (i). Journal of Natural Products, 2010, 73, 1810-1814.</i>	3.0	127
8	KAF156 Is an Antimalarial Clinical Candidate with Potential for Use in Prophylaxis, Treatment, and Prevention of Disease Transmission. Antimicrobial Agents and Chemotherapy, 2014, 58, 5060-5067.	3.2	122
9	Lagunamide C, a cytotoxic cyclodepsipeptide from the marine cyanobacterium Lyngbya majuscula. Phytochemistry, 2011, 72, 2369-2375.	2.9	97
10	Lysyl-tRNA synthetase as a drug target in malaria and cryptosporidiosis. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 7015-7020.	7.1	94
11	Dual Plasmepsin-Targeting Antimalarial Agents Disrupt Multiple Stages of the Malaria Parasite Life Cycle. Cell Host and Microbe, 2020, 27, 642-658.e12.	11.0	94
12	Imidazolopiperazines: Hit to Lead Optimization of New Antimalarial Agents. Journal of Medicinal Chemistry, 2011, 54, 5116-5130.	6.4	91
13	Imidazolopiperazines: Lead Optimization of the Second-Generation Antimalarial Agents. Journal of Medicinal Chemistry, 2012, 55, 4244-4273.	6.4	83
14	Antiparasitic agents: new drugs on the horizon. Current Opinion in Pharmacology, 2012, 12, 562-566.	3.5	72
15	Use of poly(amidoamine) drug conjugates for the delivery of antimalarials to Plasmodium. Journal of Controlled Release, 2014, 177, 84-95.	9.9	66
16	Combining 4-Aminoquinoline- and Clotrimazole-Based Pharmacophores toward Innovative and Potent Hybrid Antimalarials. Journal of Medicinal Chemistry, 2009, 52, 502-513.	6.4	55
17	Malaria-Infected Mice Are Cured by Oral Administration of New Artemisinin Derivatives. Journal of Medicinal Chemistry, 2008, 51, 1035-1042.	6.4	54
18	Agrochemicals against Malaria, Sleeping Sickness, Leishmaniasis and Chagas Disease. PLoS Neglected Tropical Diseases, 2012, 6, e1805.	3.0	54

#	Article	IF	CITATIONS
19	Pseudilins: Halogenated, Allosteric Inhibitors of the Nonâ€Mevalonate Pathway Enzyme IspD. Angewandte Chemie - International Edition, 2014, 53, 2235-2239.	13.8	53
20	Antimalarial activities of ferroquine conjugates with either glutathione reductase inhibitors or glutathione depletors via a hydrolyzable amide linker. Bioorganic and Medicinal Chemistry, 2009, 17, 8048-8059.	3.0	52
21	Tuning and predicting biological affinity: aryl nitriles as cysteine protease inhibitors. Organic and Biomolecular Chemistry, 2012, 10, 5764.	2.8	49
22	Inhibitors of Plasmodial Serine Hydroxymethyltransferase (SHMT): Cocrystal Structures of Pyrazolopyrans with Potent Blood- and Liver-Stage Activities. Journal of Medicinal Chemistry, 2015, 58, 3117-3130.	6.4	46
23	Optimization of Triazine Nitriles as Rhodesain Inhibitors: Structure–Activity Relationships, Bioisosteric Imidazopyridine Nitriles, and Xâ€ray Crystal Structure Analysis with Human Cathepsinâ€L. ChemMedChem, 2013, 8, 967-975.	3.2	45
24	Vertebrate-type and plant-type ferredoxins: crystal structure comparison and electron transfer pathway modelling. Journal of Molecular Biology, 1999, 294, 501-513.	4.2	44
25	Optimization of 4-Aminoquinoline/Clotrimazole-Based Hybrid Antimalarials: Further Structure–Activity Relationships, in Vivo Studies, and Preliminary Toxicity Profiling. Journal of Medicinal Chemistry, 2012, 55, 6948-6967.	6.4	43
26	Gift from Nature: Cyclomarinâ€A Kills Mycobacteria and Malaria Parasites by Distinct Modes of Action. ChemBioChem, 2015, 16, 2433-2436.	2.6	40
27	Antimalarial Inhibitors Targeting Serine Hydroxymethyltransferase (SHMT) with in Vivo Efficacy and Analysis of their Binding Mode Based on X-ray Cocrystal Structures. Journal of Medicinal Chemistry, 2017, 60, 4840-4860.	6.4	40
28	The Loop Region Covering the Iron-Sulfur Cluster in Bovine Adrenodoxin Comprises a New Interaction Site for Redox Partners. Journal of Biological Chemistry, 2001, 276, 1369-1375.	3.4	37
29	An amphiphilic graft copolymer-based nanoparticle platform for reduction-responsive anticancer and antimalarial drug delivery. Nanoscale, 2016, 8, 14858-14869.	5.6	33
30	Differential i>var i>Gene Expression in Children with Malaria and Antidromic Effects on Host Gene Expression. Journal of Infectious Diseases, 2010, 202, 313-317.	4.0	30
31	Deorphaning Pyrrolopyrazines as Potent Multi‶arget Antimalarial Agents. Angewandte Chemie - International Edition, 2014, 53, 7079-7084.	13.8	30
32	Preclinical Antimalarial Combination Study of M5717, a Plasmodium falciparum Elongation Factor 2 Inhibitor, and Pyronaridine, a Hemozoin Formation Inhibitor. Antimicrobial Agents and Chemotherapy, $2020, 64, .$	3.2	30
33	Potent and Selective Inhibition of Cysteine Proteases from <i>Plasmodium falciparum</i> and <i>Trypanosoma brucei</i> ChemMedChem, 2011, 6, 273-278.	3.2	29
34	Preclinical Evaluation of the Antifolate QN254, 5-Chloro- <i>N</i> à€²6′-(2,5-Dimethoxy-Benzyl)-Quinazoline-2,4,6-Triamine, as an Antimalarial Drug Candidate. Antimicrobial Agents and Chemotherapy, 2010, 54, 2603-2610.	3.2	25
35	Antimalarial Mannoxanes: Hybrid Antimalarial Drugs with Outstanding Oral Activity Profiles and A Potential Dual Mechanism of Action. ChemMedChem, 2011, 6, 1357-1361.	3.2	25
36	Flexible 3D Cell-Based Platforms for the Discovery and Profiling of Novel Drugs Targeting <i>Plasmodium</i> Hepatic Infection. ACS Infectious Diseases, 2019, 5, 1831-1842.	3.8	25

#	Article	IF	Citations
37	Characterization of a Serine Hydrolase Targeted by Acyl-protein Thioesterase Inhibitors in Toxoplasma gondii. Journal of Biological Chemistry, 2013, 288, 27002-27018.	3.4	23
38	Potent Inhibitors of <i>Plasmodial</i> Serine Hydroxymethyltransferase (SHMT) Featuring a Spirocyclic Scaffold. ChemMedChem, 2018, 13, 931-943.	3.2	21
39	Conformational Aspects in the Design of Inhibitors for Serine Hydroxymethyltransferase (SHMT): Biphenyl, Aryl Sulfonamide, and Aryl Sulfone Motifs. Chemistry - A European Journal, 2017, 23, 14345-14357.	3.3	20
40	Polyamidoamine Nanoparticles for the Oral Administration of Antimalarial Drugs. Pharmaceutics, 2018, 10, 225.	4.5	17
41	Cell Penetration, Herbicidal Activity, and <i>inâ€vivo</i> àâ€Toxicity of Oligoâ€Arginine Derivatives and of Novel Guanidiniumâ€Rich Compounds Derived from the Biopolymer Cyanophycin. Helvetica Chimica Acta, 2018, 101, e1800112.	1.6	17
42	Identification of 1,3 $\hat{a} \in D$ iiminoisoindoline Carbohydrazides as Potential Antimalarial Candidates. ChemMedChem, 2012, 7, 151-158.	3.2	16
43	Pharmacokinetic-Pharmacodynamic Analysis of Spiroindolone Analogs and KAE609 in a Murine Malaria Model. Antimicrobial Agents and Chemotherapy, 2015, 59, 1200-1210.	3.2	15
44	Genetic diversity of expressed Plasmodium falciparum var genes from Tanzanian children with severe malaria. Malaria Journal, 2012, 11, 230.	2.3	14
45	Potent Inhibitors of Malarial Aspartic Proteases, the Plasmepsins, by Hydroformylation of Substituted 7â€Azanorbornenes. Chemistry - A European Journal, 2013, 19, 155-164.	3.3	14
46	Machine learning prioritizes synthesis of primaquine ureidoamides with high antimalarial activity and attenuated cytotoxicity. European Journal of Medicinal Chemistry, 2018, 146, 651-667.	5.5	11
47	Ensemble modeling highlights importance of understanding parasite-host behavior in preclinical antimalarial drug development. Scientific Reports, 2020, 10, 4410.	3.3	10
48	Lerisetron Analogues with Antimalarial Properties: Synthesis, Structure–Activity Relationship Studies, and Biological Assessment. ACS Omega, 2020, 5, 6967-6982.	3.5	10
49	Assessment of the rules related to gaining activity against Gram-negative bacteria. RSC Medicinal Chemistry, 2021, 12, 593-601.	3.9	7
50	Targeting the IspD Enzyme in the MEP Pathway: Identification of a Novel Fragment Class. ChemMedChem, 2021, , e202100679.	3.2	4
51	Translation of liver stage activity of M5717, a PlasmodiumÂelongation factor 2 inhibitor: from bench to bedside. Malaria Journal, 2022, 21, 151.	2.3	3
52	Parasite Viability as a Measure of <i>In Vivo</i> Drug Activity in Preclinical and Early Clinical Antimalarial Drug Assessment. Antimicrobial Agents and Chemotherapy, 2022, 66, .	3.2	3
53	Search for the Active Ingredients from a 2â€Aminothiazole DMSO Stock Solution with Antimalarial Activity. ChemMedChem, 2021, 16, 2089-2093.	3.2	2