
Katsunori Mizuno

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3451694/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Propagation of two longitudinal waves in human cancellous bone: An <i>in vitro</i> study. Journal of the Acoustical Society of America, 2009, 125, 3460-3466.	1.1	79
2	Numerical and experimental study on the wave attenuation in bone – FDTD simulation of ultrasound propagation in cancellous bone. Ultrasonics, 2008, 48, 607-612.	3.9	75
3	Effects of structural anisotropy of cancellous bone on speed of ultrasonic fast waves in the bovine femur. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2008, 55, 1480-1487.	3.0	69
4	Integration of sonar and optical camera images using deep neural network for fish monitoring. Aquacultural Engineering, 2019, 86, 102000.	3.1	40
5	Influence of cancellous bone microstructure on two ultrasonic wave propagations in bovine femur: An in vitro study. Journal of the Acoustical Society of America, 2010, 128, 3181-3189.	1.1	37
6	Determining attenuation properties of interfering fast and slow ultrasonic waves in cancellous bone. Journal of the Acoustical Society of America, 2011, 130, 2233-2240.	1.1	36
7	Propagation of two longitudinal waves in a cancellous bone with the closed pore boundary. Journal of the Acoustical Society of America, 2011, 130, EL122-EL127.	1.1	28
8	Propagation of fast and slow waves in cancellous bone: Comparative study of simulation and experiment. Acoustical Science and Technology, 2009, 30, 257-264.	0.5	28
9	Electrical potentials in bone induced by ultrasound irradiation in the megahertz range. Applied Physics Letters, 2013, 103, .	3.3	23
10	A simple and efficient method for making a high-resolution seagrass map and quantification of dugong feeding trail distribution: A field test at Mayo Bay, Philippines. Ecological Informatics, 2017, 38, 89-94.	5.2	21
11	Effects of microstructure and water on the electrical potentials in bone induced by ultrasound irradiation. Applied Physics Letters, 2015, 106, .	3.3	16
12	An experimental study on the ultrasonic wave propagation in cancellous bone: Waveform changes during propagation. Journal of the Acoustical Society of America, 2013, 134, 4775-4781.	1.1	15
13	Two-wave behavior under various conditions of transition area from cancellous bone to cortical bone. Ultrasonics, 2014, 54, 1245-1250.	3.9	15
14	Two-wave propagation imaging to evaluate the structure of cancellous bone. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2012, 59, 1160-1166.	3.0	14
15	3D-view Generation and Species Classification of Aquatic Plants Using Acoustic Images. The Journal of the Marine Acoustics Society of Japan, 2013, 40, 14-26.	0.2	14
16	Fast and slow wave detection in bovine cancellous bone in vitro using bandlimited deconvolution and Prony's method. Journal of the Acoustical Society of America, 2014, 136, 2015-2024.	1.1	13
17	Effect of Boundary Condition on the Two-Wave Propagation in Cancellous Bone. Japanese Journal of Applied Physics, 2011, 50, 07HF19.	1.5	12
18	Fast characterization of two ultrasound longitudinal waves in cancellous bone using an adaptive beamforming technique, Journal of the Acoustical Society of America, 2015, 137, 1683-1692	1.1	12

Katsunori Mizuno

#	Article	IF	CITATIONS
19	Wavelet Transform Analysis of Ultrasonic Wave Propagation in Cancellous Bone. Japanese Journal of Applied Physics, 2010, 49, 07HF28.	1.5	11
20	Quantification of whooper swan damage to lotus habitats using high-resolution acoustic imaging sonar in Lake Izunuma, Japan. Aquatic Botany, 2013, 110, 48-54.	1.6	11
21	An efficient coral survey method based on a large-scale 3-D structure model obtained by Speedy Sea Scanner and U-Net segmentation. Scientific Reports, 2020, 10, 12416.	3.3	11
22	Storm surge risk assessment for the insurance system: A case study in Tokyo Bay, Japan. Ocean and Coastal Management, 2020, 189, 105147.	4.4	11
23	Effect of anisotropy on stress-induced electrical potentials in bovine bone using ultrasound irradiation. Applied Physics Letters, 2017, 110, .	3.3	10
24	Development of an Efficient Coral-Coverage Estimation Method Using a Towed Optical Camera Array System [Speedy Sea Scanner (SSS)] and Deep-Learning-Based Segmentation: A Sea Trial at the Kujuku-Shima Islands. IEEE Journal of Oceanic Engineering, 2020, 45, 1386-1395.	3.8	10
25	Automatic non-destructive three-dimensional acoustic coring system for in situ detection of aquatic plant root under the water bottom. Case Studies in Nondestructive Testing and Evaluation, 2016, 5, 1-8.	1.7	9
26	Three dimensional mapping of aquatic plants at shallow lakes using 1.8 MHz high-resolution acoustic imaging sonar and image processing technology. , 2014, , .		8
27	Conventional, Bayesian, and Modified Prony's methods for characterizing fast and slow waves in equine cancellous bone. Journal of the Acoustical Society of America, 2015, 138, 594-604.	1.1	8
28	Development of the Parametric Sub-Bottom Profiler for Autonomous Underwater Vehicles and the Application of Continuous Wavelet Transform for Sediment Layer Detections. The Journal of the Marine Acoustics Society of Japan, 2016, 43, 233-248.	0.2	8
29	Effect of Boundary Condition on the Two-Wave Propagation in Cancellous Bone. Japanese Journal of Applied Physics, 2011, 50, 07HF19.	1.5	8
30	Assessing the biological process of Hydrilla verticillata predation in a eutrophic pond using high-resolution acoustic imaging sonar. Limnology, 2016, 17, 13-21.	1.5	7
31	Validation of a high-resolution acoustic imaging sonar method by estimating the biomass of submerged plants in shallow water. Ecological Informatics, 2018, 46, 179-184.	5.2	7
32	Numerical and Experimental Study of Wave Propagation in Water-Saturated Granular Media Using Effective Method Theories and a Full-Wave Numerical Simulation. IEEE Journal of Oceanic Engineering, 2020, 45, 772-785.	3.8	6
33	Costâ€effective seafloor habitat mapping using a portable speedy sea scanner and deepâ€learningâ€based segmentation: A sea trial at Pujada Bay, Philippines. Methods in Ecology and Evolution, 2022, 13, 339-345.	5.2	6
34	Application of wavelet shrinkage to acoustic imaging of buried asari clams using high-frequency ultrasound. Japanese Journal of Applied Physics, 2018, 57, 07LG08.	1.5	5
35	Native gold and gold-rich sulfide deposits in a submarine basaltic caldera, Higashi-Aogashima hydrothermal field, Izu-Ogasawara frontal arc, Japan. Mineralium Deposita, 2019, 54, 117-132.	4.1	5
36	Seafloor Hydrothermal Deposits Exploration by Bathymetry and Backscattering Data Using Multibeam Echo-Sounder in the Higashi-Aogashima Caldera. The Journal of the Marine Acoustics Society of Japan, 2016, 43, 208-218.	0.2	2

#	Article	IF	CITATIONS
37	Characterization of the fast wave in cancellous bone using the Bayesian probability theory approach. , 2011, , .		1
38	Detection of shellfish in the sediment by 1-MHz ultrasound: Focusing on weak scatter and incident angle. , 2016, , .		1
39	Development of Coral-Coverage Estimation Method Using Deep Learning and Sea Trial: at Kujuku-Shima Islands. , 2018, , .		1
40	New method of mussel survey by using high-resolution acoustic video camera-ARIS and deep learning. , 2022, , .		1
41	P5A-2 An Experimental Study on the Ultrasonic Wave Propagation and Structural Anisotropy in Bovine Cancellous Bone. Proceedings IEEE Ultrasonics Symposium, 2007, , .	0.0	Ο
42	Numerical and experimental study on wave propagation in granular media using a spectral-element method. , 2019, , .		0
43	Ultrasonic Assessment of Cancellous Bone Based on the Two-Wave Phenomenon. Advances in Experimental Medicine and Biology, 2022, 1364, 119-143.	1.6	0