Alexis Kaushansky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/345160/publications.pdf

Version: 2024-02-01

53 1,992 24 42 g-index
64 64 64 2681

times ranked

citing authors

docs citations

all docs

#	Article	IF	Citations
1	Cyclosporine Induces Fenestra-Associated Injury in Human Renal Microvessels <i>In Vitro</i> . ACS Biomaterials Science and Engineering, 2022, 8, 196-207.	2.6	4
2	A genome-wide CRISPR-Cas9 screen identifies CENPJ as a host regulator of altered microtubule organization during Plasmodium liver infection. Cell Chemical Biology, 2022, 29, 1419-1433.e5.	2.5	10
3	Germinal center activity and B cell maturation are associated with protective antibody responses against Plasmodium pre-erythrocytic infection. PLoS Pathogens, 2022, 18, e1010671.	2.1	4
4	A systems-level gene regulatory network model for <i>Plasmodium falciparum</i> . Nucleic Acids Research, 2021, 49, 4891-4906.	6.5	2
5	Host-targeted Interventions as an Exciting Opportunity to Combat Malaria. Chemical Reviews, 2021, 121, 10452-10468.	23.0	15
6	Exploiting polypharmacology to dissect host kinases and kinase inhibitors that modulate endothelial barrier integrity. Cell Chemical Biology, 2021, , .	2.5	9
7	Antibody interference by a non-neutralizing antibody abrogates humoral protection against Plasmodium yoelii liver stage. Cell Reports, 2021, 36, 109489.	2.9	14
8	Host-directed therapy, an untapped opportunity for antimalarial intervention. Cell Reports Medicine, 2021, 2, 100423.	3.3	19
9	Elucidating Spatially-Resolved Changes in Host Signaling During Plasmodium Liver-Stage Infection. Frontiers in Cellular and Infection Microbiology, 2021, 11, 804186.	1.8	1
10	Liver stage malaria infection is controlled by host regulators of lipid peroxidation. Cell Death and Differentiation, 2020, 27, 44-54.	5.0	56
11	Identification of Selective Inhibitors of <i>Plasmodium</i> N-Myristoyltransferase by High-Throughput Screening. Journal of Medicinal Chemistry, 2020, 63, 591-600.	2.9	17
12	Crippling life support for SARS-CoV-2 and other viruses through synthetic lethality. Journal of Cell Biology, 2020, 219, .	2.3	20
13	Exciting Contributions to the Cryptosporidium Renaissance. Cell Host and Microbe, 2019, 26, 5-7.	5.1	2
14	A Molecular Signature in Blood Reveals a Role for p53 in Regulating Malaria-Induced Inflammation. Immunity, 2019, 51, 750-765.e10.	6.6	67
15	Spatial presentation of biological molecules to cells by localized diffusive transfer. Lab on A Chip, 2019, 19, 2114-2126.	3.1	1
16	Alterations in Phosphorylation of Hepatocyte Ribosomal Protein S6 Control Plasmodium Liver Stage Infection. Cell Reports, 2019, 26, 3391-3399.e4.	2.9	11
17	Plasmodium Secretion Induces Hepatocyte Lysosome Exocytosis and Promotes Parasite Entry. IScience, 2019, 21, 603-611.	1.9	16
18	<i>Plasmodium yoelii</i> S4/CelTOS is important for sporozoite gliding motility and cell traversal. Cellular Microbiology, 2018, 20, e12817.	1.1	18

#	Article	IF	Citations
19	Next Generation Histology-Directed Imaging Mass Spectrometry Driven by Autofluorescence Microscopy. Analytical Chemistry, 2018, 90, 12404-12413.	3.2	46
20	A call to arms: Unifying the fight against resistance. Science Signaling, 2018, 11 , .	1.6	3
21	Opportunities for Host-targeted Therapies for Malaria. Trends in Parasitology, 2018, 34, 843-860.	1.5	48
22	Identifying host regulators and inhibitors of liver stage malaria infection using kinase activity profiles. Nature Communications, 2017, 8, 1232.	5.8	33
23	The Promise of Systems Biology Approaches for Revealing Host Pathogen Interactions in Malaria. Frontiers in Microbiology, 2017, 8, 2183.	1.5	17
24	Host ER stress during malaria parasite infection. EMBO Reports, 2015, 16, 883-884.	2.0	12
25	Host-based Prophylaxis Successfully Targets Liver Stage Malaria Parasites. Molecular Therapy, 2015, 23, 857-865.	3.7	33
26	Susceptibility to Plasmodium yoelii Preerythrocytic Infection in BALB/c Substrains Is Determined at the Point of Hepatocyte Invasion. Infection and Immunity, 2015, 83, 39-47.	1.0	22
27	Plasmodium vivax Liver Stage Development and Hypnozoite Persistence in Human Liver-Chimeric Mice. Cell Host and Microbe, 2015, 17, 526-535.	5.1	188
28	Selection and refinement: the malaria parasite's infection and exploitation of host hepatocytes. Current Opinion in Microbiology, 2015, 26, 71-78.	2.3	28
29	Malaria parasites target the hepatocyte receptor EphA2 for successful host infection. Science, 2015, 350, 1089-1092.	6.0	119
30	Flow Cytometry-Based Assessment of Antibody Function Against Malaria Pre-erythrocytic Infection. Methods in Molecular Biology, 2015, 1325, 49-58.	0.4	6
31	Systems Biology of Megakaryocytes. Advances in Experimental Medicine and Biology, 2014, 844, 59-84.	0.8	8
32	Of men in mice: the success and promise of humanized mouse models for human malaria parasite infections. Cellular Microbiology, 2014, 16, 602-611.	1.1	55
33	Susceptibility to <i>Plasmodium</i> liver stage infection is altered by hepatocyte polyploidy. Cellular Microbiology, 2014, 16, 784-795.	1.1	24
34	Model for <i>In Vivo</i> Assessment of Humoral Protection against Malaria Sporozoite Challenge by Passive Transfer of Monoclonal Antibodies and Immune Serum. Infection and Immunity, 2014, 82, 808-817.	1.0	96
35	Phosphorylated c-Mpl tyrosine 591 regulates thrombopoietin-induced signaling. Experimental Hematology, 2014, 42, 477-486.e4.	0.2	15
36	A Next-generation Genetically Attenuated Plasmodium falciparum Parasite Created by Triple Gene Deletion. Molecular Therapy, 2014, 22, 1707-1715.	3.7	74

3

#	Article	IF	CITATIONS
37	Immunization with genetically attenuated P. falciparum parasites induces long-lived antibodies that efficiently block hepatocyte invasion by sporozoites. Vaccine, 2014, 32, 2135-2138.	1.7	31
38	Suppression of Host p53 Is Critical for Plasmodium Liver-Stage Infection. Cell Reports, 2013, 3, 630-637.	2.9	89
39	Phosphotyrosine Signaling Proteins that Drive Oncogenesis Tend to be Highly Interconnected. Molecular and Cellular Proteomics, 2013, 12, 1204-1213.	2.5	31
40	Malaria parasite liver stages render host hepatocytes susceptible to mitochondria-initiated apoptosis. Cell Death and Disease, 2013, 4, e762-e762.	2.7	59
41	Development of a quantitative flow cytometry-based assay to assess infection by Plasmodium falciparum sporozoites. Molecular and Biochemical Parasitology, 2012, 183, 100-103.	0.5	30
42	Complete Plasmodium falciparum liver-stage development in liver-chimeric mice. Journal of Clinical Investigation, 2012, 122, 3618-3628.	3.9	200
43	Tensin2 is a novel mediator in thrombopoietin (TPO)-induced cellular proliferation by promoting Akt signaling. Cell Cycle, 2011, 10, 1838-1844.	1.3	29
44	The crucial role of hepatocyte growth factor receptor during liver-stage infection is not conserved among Plasmodium species. Nature Medicine, 2011, 17, 1180-1181.	15.2	37
45	Quantifying protein–protein interactions in high throughput using protein domain microarrays. Nature Protocols, 2010, 5, 773-790.	5.5	76
46	Tyrosine-Phosphorylated Caveolin-1 Blocks Bacterial Uptake by Inducing Vav2-RhoA-Mediated Cytoskeletal Rearrangements. PLoS Biology, 2010, 8, e1000457.	2.6	32
47	Tarp regulates early <i>Chlamydia</i> -induced host cell survival through interactions with the human adaptor protein SHC1. Journal of Cell Biology, 2010, 190, 143-157.	2.3	63
48	Tarp regulates early <i>Chlamydia</i> -induced host cell survival through interactions with the human adaptor protein SHC1. Journal of Experimental Medicine, 2010, 207, i23-i23.	4.2	0
49	Linear combinations of docking affinities explain quantitative differences in RTK signaling. Molecular Systems Biology, 2009, 5, 235.	3.2	52
50	Functional Interaction Between c-MPL and Tensin2: A Novel and Potentially Important Pathway in Thrombopoietin Mediated Signaling Blood, 2009, 114, 3609-3609.	0.6	0
51	System-wide Investigation of ErbB4 Reveals 19 Sites of Tyr Phosphorylation that Are Unusually Selective in Their Recruitment Properties. Chemistry and Biology, 2008, 15, 808-817.	6.2	66
52	A quantitative study of the recruitment potential of all intracellular tyrosine residues on EGFR, FGFR1 and IGF1R. Molecular BioSystems, 2008, 4, 643.	2.9	54
53	A Structure-Function Analysis of Serine/Threonine Phosphorylation of the Thrombopoietin Receptor, c-Mpl. Journal of Biological Chemistry, 2000, 275, 32214-32219.	1.6	22