
Vincenzo Vaiano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3451542/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Enhanced photocatalytic removal of phenol from aqueous solutions using ZnO modified with Ag. Applied Catalysis B: Environmental, 2018, 225, 197-206.	20.2	392
2	Nanostructured N-doped TiO2 coated on glass spheres for the photocatalytic removal of organic dyes under UV or visible light irradiation. Applied Catalysis B: Environmental, 2015, 170-171, 153-161.	20.2	220
3	Cu-doped ZnO as efficient photocatalyst for the oxidation of arsenite to arsenate under visible light. Applied Catalysis B: Environmental, 2018, 238, 471-479.	20.2	190
4	Effect of solar simulated N-doped TiO2 photocatalysis on the inactivation and antibiotic resistance of an E. coli strain in biologically treated urban wastewater. Applied Catalysis B: Environmental, 2014, 144, 369-378.	20.2	176
5	Photocatalytic removal of atrazine using N-doped TiO2 supported on phosphors. Applied Catalysis B: Environmental, 2015, 164, 462-474.	20.2	134
6	Photocatalytic removal of spiramycin from wastewater under visible light with N-doped TiO2 photocatalysts. Chemical Engineering Journal, 2015, 261, 3-8.	12.7	133
7	Photocatalytic removal of patent blue V dye on Au-TiO 2 and Pt-TiO 2 catalysts. Applied Catalysis B: Environmental, 2016, 188, 134-146.	20.2	130
8	Photocatalytic treatment of aqueous solutions at high dye concentration using praseodymium-doped ZnO catalysts. Applied Catalysis B: Environmental, 2017, 209, 621-630.	20.2	129
9	Photocatalytic activity of a visible light active structured photocatalyst developed for municipal wastewater treatment. Journal of Cleaner Production, 2018, 175, 38-49.	9.3	106
10	Photocatalytic Degradation of Organic Dyes under Visible Light on N-Doped <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" id="M1"><mml:mrow><mml:msub><mml:mrow><ml:mtext>TiO</ml:mtext></mml:mrow><ml:mtext>2<!--<br-->International Journal of Photoenergy, 2012, 2012, 1-8.</ml:mtext></mml:msub></mml:mrow></mml:math 	mma:5 mmi:mtex	101 t>
11	Enhanced photocatalytic hydrogen production from glucose aqueous matrices on Ru-doped LaFeO3. Applied Catalysis B: Environmental, 2017, 207, 182-194.	20.2	94
12	Nâ€doped <scp>TiO₂</scp> /sâ€ <scp>PS</scp> aerogels for photocatalytic degradation of organic dyes in wastewater under visible light irradiation. Journal of Chemical Technology and Biotechnology, 2014, 89, 1175-1181.	3.2	89
13	Enhanced removal of water pollutants by dielectric barrier discharge non-thermal plasma reactor. Separation and Purification Technology, 2019, 215, 155-162.	7.9	85
14	From the design to the development of a continuous fixed bed photoreactor for photocatalytic degradation of organic pollutants in wastewater. Chemical Engineering Science, 2015, 137, 152-160.	3.8	83
15	UV and visible-light driven photocatalytic removal of caffeine using ZnO modified with different noble metals (Pt, Ag and Au). Materials Research Bulletin, 2019, 112, 251-260.	5.2	81
16	Limitations and Prospects for Wastewater Treatment by UV and Visible-Light-Active Heterogeneous Photocatalysis: A Critical Review. Topics in Current Chemistry, 2020, 378, 7.	5.8	78
17	Mathematical modelling of photocatalytic degradation of methylene blue under visible light irradiation. Journal of Environmental Chemical Engineering, 2013, 1, 56-60.	6.7	75
18	Production of hydrogen from glucose by LaFeO 3 based photocatalytic process during water treatment. International Journal of Hydrogen Energy, 2016, 41, 959-966.	7.1	75

#	Article	IF	CITATIONS
19	Photocatalytic hydrogen production from degradation of glucose over fluorinated and platinized TiO2 catalysts. Journal of Catalysis, 2016, 339, 47-56.	6.2	69
20	Zinc Oxide Nanoparticles Obtained by Supercritical Antisolvent Precipitation for the Photocatalytic Degradation of Crystal Violet Dye. Catalysts, 2019, 9, 346.	3.5	68
21	Cyclohexane photocatalytic oxidation on Pt/TiO2 catalysts. Catalysis Today, 2013, 209, 164-169.	4.4	66
22	ZnO supported on zeolite pellets as efficient catalytic system for the removal of caffeine by adsorption and photocatalysis. Separation and Purification Technology, 2018, 193, 303-310.	7.9	66
23	Facile method to immobilize ZnO particles on glass spheres for the photocatalytic treatment of tannery wastewater. Journal of Colloid and Interface Science, 2018, 518, 192-199.	9.4	65
24	Rare earth oxides in zirconium dioxide: How to turn a wide band gap metal oxide into a visible light active photocatalyst. Journal of Energy Chemistry, 2017, 26, 270-276.	12.9	64
25	UV-LEDs floating-bed photoreactor for the removal of caffeine and paracetamol using ZnO supported on polystyrene pellets. Chemical Engineering Journal, 2018, 350, 703-713.	12.7	61
26	Ethanol partial photoxidation on Pt/TiO2 catalysts as green route for acetaldehyde synthesis. Catalysis Today, 2012, 196, 101-109.	4.4	60
27	Photocatalytic Degradation of Azo Dye Reactive Violet 5 on Fe-Doped Titania Catalysts under Visible Light Irradiation. Catalysts, 2019, 9, 645.	3.5	60
28	Hydrogen production from glucose degradation in water and wastewater treated by Ru-LaFeO3/Fe2O3 magnetic particles photocatalysis and heterogeneous photo-Fenton. International Journal of Hydrogen Energy, 2018, 43, 2184-2196.	7.1	59
29	Surface water disinfection by chlorination and advanced oxidation processes: Inactivation of an antibiotic resistant E. coli strain and cytotoxicity evaluation. Science of the Total Environment, 2016, 554-555, 1-6.	8.0	58
30	Photocatalytic degradation of paracetamol under UV irradiation using TiO2-graphite composites. Catalysis Today, 2018, 315, 230-236.	4.4	58
31	Structured catalysts for photo-Fenton oxidation of acetic acid. Catalysis Today, 2011, 161, 255-259.	4.4	57
32	Enhanced visible light photocatalytic activity by up-conversion phosphors modified N-doped TiO2. Applied Catalysis B: Environmental, 2015, 176-177, 594-600.	20.2	54
33	Changes in Antibiotic Resistance Gene Levels in Soil after Irrigation with Treated Wastewater: A Comparison between Heterogeneous Photocatalysis and Chlorination. Environmental Science & Technology, 2020, 54, 7677-7686.	10.0	54
34	Photocurrent increase by metal modification of Fe 2 O 3 photoanodes and its effect on photoelectrocatalytic hydrogen production by degradation of organic substances. Applied Surface Science, 2017, 400, 176-183.	6.1	53
35	Crystal violet and toxicity removal by adsorption and simultaneous photocatalysis in a continuous flow micro-reactor. Science of the Total Environment, 2018, 644, 430-438.	8.0	49
36	Visible light active N-doped TiO2 immobilized on polystyrene as efficient system for wastewater treatment. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 348, 255-262.	3.9	48

#	Article	IF	CITATIONS
37	Main parameters influencing the design of photocatalytic reactors for wastewater treatment: a mini review. Journal of Chemical Technology and Biotechnology, 2020, 95, 2608-2618.	3.2	48
38	Process intensification in the removal of organic pollutants from wastewater using innovative photocatalysts obtained coupling Zinc Sulfide based phosphors with nitrogen doped semiconductors. Journal of Cleaner Production, 2015, 100, 208-211.	9.3	47
39	Electric energy saving in photocatalytic removal of crystal violet dye through the simultaneous use of long-persistent blue phosphors, nitrogen-doped TiO2 and UV-light emitting diodes. Journal of Cleaner Production, 2019, 210, 1015-1021.	9.3	47
40	Innovative structured VO /TiO2 photocatalysts supported on phosphors for the selective photocatalytic oxidation of ethanol to acetaldehyde. Catalysis Today, 2013, 205, 159-167.	4.4	45
41	H 2 production by thermal decomposition of H 2 S in the presence of oxygen. International Journal of Hydrogen Energy, 2015, 40, 106-113.	7.1	44
42	Heterogeneous photocatalytic oxidation of methyl ethyl ketone under UV-A light in an LED-fluidized bed reactor. Catalysis Today, 2014, 230, 79-84.	4.4	43
43	Ag modified ZnS for photocatalytic water pollutants degradation: Influence of metal loading and preparation method. Journal of Colloid and Interface Science, 2019, 537, 671-681.	9.4	43
44	Pt–TiO2–Nb2O5 heterojunction as effective photocatalyst for the degradation of diclofenac and ketoprofen. Materials Science in Semiconductor Processing, 2020, 107, 104839.	4.0	43
45	Visible light active Fe-Pr co-doped TiO2 for water pollutants degradation. Catalysis Today, 2021, 380, 93-104.	4.4	42
46	Photocatalytic Degradation of Eriochrome Black-T Azo Dye Using Eu-Doped ZnO Prepared by Supercritical Antisolvent Precipitation Route: A Preliminary Investigation. Topics in Catalysis, 2020, 63, 1193-1205.	2.8	41
47	Removal of phenol in aqueous media by N-doped TiO2 based photocatalytic aerogels. Materials Science in Semiconductor Processing, 2018, 80, 104-110.	4.0	40
48	Photocatalytic H2 production from glycerol aqueous solutions over fluorinated Pt-TiO2 with high {001} facet exposure. Journal of Photochemistry and Photobiology A: Chemistry, 2018, 365, 52-59.	3.9	40
49	Enhanced visible-light-driven photodegradation of Acid Orange 7 azo dye in aqueous solution using Fe-N co-doped TiO2. Arabian Journal of Chemistry, 2020, 13, 8347-8360.	4.9	40
50	Fluidized-Bed Reactor for the Intensification of Gas-Phase Photocatalytic Oxidative Dehydrogenation of Cyclohexane. Industrial & amp; Engineering Chemistry Research, 2010, 49, 10279-10286.	3.7	39
51	Photocatalytic oxidation of ethanol using undoped and Ru-doped titania: Acetaldehyde, hydrogen or electricity generation. Chemical Engineering Journal, 2013, 224, 144-148.	12.7	39
52	Influence of the Photoreactor Configuration and of Different Light Sources in the Photocatalytic Treatment of Highly Polluted Wastewater. International Journal of Chemical Reactor Engineering, 2014, 12, 63-75.	1.1	39
53	Photocatalytic reduction of CO2 over platinised Bi2WO6-based materials. Photochemical and Photobiological Sciences, 2015, 14, 678-685.	2.9	39
54	Non-Thermal Plasma Coupled with Catalyst for the Degradation of Water Pollutants: A Review. Catalysts, 2020, 10, 1438.	3.5	39

#	Article	IF	CITATIONS
55	Reaction mechanism of cyclohexane selective photo-oxidation to benzene on molybdena/titania catalysts. Applied Catalysis A: General, 2008, 349, 140-147.	4.3	38
56	Avoiding the deactivation of sulphated MoOx/TiO2 catalysts in the photocatalytic cyclohexane oxidative dehydrogenation by a fluidized bed photoreactor. Applied Catalysis A: General, 2011, 394, 71-78.	4.3	38
57	Photo-activated degradation of tartrazine by H 2 O 2 as catalyzed by both bare and Fe-doped methyl-imogolite nanotubes. Catalysis Today, 2018, 304, 199-207.	4.4	38
58	F-doped ZnO nano- and meso-crystals with enhanced photocatalytic activity in diclofenac degradation. Science of the Total Environment, 2021, 762, 143066.	8.0	37
59	Tuning the selectivity of MoOx supported catalysts for cyclohexane photo oxidehydrogenation. Catalysis Today, 2007, 128, 251-257.	4.4	36
60	Photocatalytic Hydrogen Production from Glycerol Aqueous Solution Using Cu-Doped ZnO under Visible Light Irradiation. Applied Sciences (Switzerland), 2019, 9, 2741.	2.5	36
61	Degradation of terephthalic acid in a photocatalytic system able to work also at high pressure. Chemical Engineering Journal, 2017, 312, 10-19.	12.7	34
62	One-Step Catalytic or Photocatalytic Oxidation of Benzene to Phenol: Possible Alternative Routes for Phenol Synthesis?. Catalysts, 2020, 10, 1424.	3.5	33
63	Photocatalysed selective oxidation of cyclohexane to benzene on MoOx/TiO2. Catalysis Today, 2005, 99, 143-149.	4.4	32
64	MoO /TiO2 immobilized on quartz support as structured catalyst for the photocatalytic oxidation of As(III) to As(V) in aqueous solutions. Chemical Engineering Research and Design, 2016, 109, 190-199.	5.6	32
65	Simultaneous Production of CH ₄ and H ₂ from Photocatalytic Reforming of Glucose Aqueous Solution on Sulfated Pd-TiO ₂ Catalysts. Oil and Gas Science and Technology, 2015, 70, 891-902.	1.4	31
66	Density Functional Theory Study and Photocatalytic Activity of ZnO/N-Doped TiO ₂ Heterojunctions. Journal of Physical Chemistry C, 2022, 126, 7000-7011.	3.1	31
67	Keggin heteropolyacids supported on TiO2 used in gas-solid (photo)catalytic propene hydration and in liquid-solid photocatalytic glycerol dehydration. Catalysis Today, 2017, 281, 60-70.	4.4	30
68	Packed Bed Photoreactor for the Removal of Water Pollutants Using Visible Light Emitting Diodes. Applied Sciences (Switzerland), 2019, 9, 472.	2.5	30
69	Solar driven photocatalysis using iron and chromium doped TiO2 coupled to moving bed biofilm process for olive mill wastewater treatment. Chemical Engineering Journal, 2022, 450, 138107.	12.7	30
70	Intensification of gas-phase photoxidative dehydrogenation of ethanol to acetaldehyde by using phosphors as light carriers. Photochemical and Photobiological Sciences, 2011, 10, 414-418.	2.9	29
71	Experimental and numerical analysis of the oxidative decomposition of H 2 S. Fuel, 2017, 198, 68-75.	6.4	29
72	Photocatalytic cyclohexane oxidehydrogenation on sulphated MoOx/γ-Al2O3 catalysts. Catalysis Today, 2009, 141, 367-373.	4.4	28

#	Article	IF	CITATIONS
73	A step forwards in ethanol selective photo-oxidation. Photochemical and Photobiological Sciences, 2009, 8, 699.	2.9	28
74	Immobilised Cerium-Doped Zinc Oxide as a Photocatalyst for the Degradation of Antibiotics and the Inactivation of Antibiotic-Resistant Bacteria. Catalysts, 2019, 9, 222.	3.5	28
75	Enhanced performances of grafted VOx on titania/silica for the selective photocatalytic oxidation of ethanol to acetaldehyde. Catalysis Today, 2013, 209, 159-163.	4.4	27
76	Steam reduction of CO2 on Pd/TiO2 catalysts: a comparison between thermal and photocatalytic reactions. Photochemical and Photobiological Sciences, 2015, 14, 550-555.	2.9	26
77	Removal of arsenic from drinking water by photo atalytic oxidation on <scp>MoO_x</scp> / <scp>TiO₂</scp> and adsorption on γâ€ <scp>Al₂O₃</scp> . Journal of Chemical Technology and Biotechnology, 2016, 91. 88-95.	3.2	26
78	Optimized microwave susceptible catalytic diesel soot trap. Fuel, 2017, 205, 142-152.	6.4	26
79	Advanced Oxidation Processes for the Removal of Food Dyes in Wastewater. Current Organic Chemistry, 2017, 21, 1068-1073.	1.6	26
80	Photocatalytic hydrogen evolution by co-catalyst-free TiO ₂ /C bulk heterostructures synthesized under mild conditions. RSC Advances, 2020, 10, 12519-12534.	3.6	25
81	Cyclohexane photocatalytic oxidative dehydrogenation to benzene on sulphated titania supported MoOx. Studies in Surface Science and Catalysis, 2005, 155, 179-187.	1.5	23
82	Photocatalytic Ethanol Oxidative Dehydrogenation over Pt/TiO ₂ : Effect of the Addition of Blue Phosphors. International Journal of Photoenergy, 2012, 2012, 1-9.	2.5	23
83	Photocatalytic Removal of Methyl Orange Azo Dye with Simultaneous Hydrogen Production Using Ru-modified ZnO Photocatalyst. Catalysts, 2019, 9, 964.	3.5	23
84	Degradation of anionic azo dyes in aqueous solution using a continuous flow photocatalytic packed-bed reactor: Influence of water matrix and toxicity evaluation. Journal of Environmental Chemical Engineering, 2020, 8, 104549.	6.7	23
85	W-Doped ZnO Photocatalyst for the Degradation of Glyphosate in Aqueous Solution. Catalysts, 2021, 11, 234.	3.5	23
86	Influence of aggregate size on photoactivity of N-doped TiO2 particles in aqueous suspensions under visible light irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 2017, 336, 191-197.	3.9	22
87	Highly Robust and Selective System for Water Pollutants Removal: How to Transform a Traditional Photocatalyst into a Highly Robust and Selective System for Water Pollutants Removal. Nanomaterials, 2019, 9, 1509.	4.1	22
88	Intensification of ceftriaxone degradation under UV and solar light irradiation in presence of phosphors based structured catalyst. Chemical Engineering and Processing: Process Intensification, 2019, 137, 12-21.	3.6	21
89	Improved Performances of a Fluidized Bed Photoreactor by a Microscale Illumination System. International Journal of Photoenergy, 2009, 2009, 1-7.	2.5	20
90	Degradation of Acid Orange 7 Azo Dye in Aqueous Solution by a Catalytic-Assisted, Non-Thermal Plasma Process. Catalysts, 2020, 10, 888.	3.5	19

#	Article	IF	CITATIONS
91	Visible light driven oxidation of arsenite to arsenate in aqueous solution using Cu-doped ZnO supported on polystyrene pellets. Catalysis Today, 2021, 361, 69-76.	4.4	19
92	Inactivation of an urban wastewater indigenous <i>Escherichia coli</i> strain by cerium doped zinc oxide photocatalysis. RSC Advances, 2018, 8, 26124-26132.	3.6	18
93	Visible Light-Driven Photocatalytic Activity and Kinetics of Fe-Doped TiO2 Prepared by a Three-Block Copolymer Templating Approach. Materials, 2021, 14, 3105 Enhanced azo dye removal in aqueous solution by H <mmi:math< td=""><td>2.9</td><td>17</td></mmi:math<>	2.9	17
94	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e507" altimg="si84.svg"> <mml:msub><mml:mrow /><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:mrow </mml:msub> O <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e515"</mml:math 	6.1	16
95	altimg="si84.svg"> <mml:msub><mml:mrow /><mml:mrow><mml:mn>2</mml:mn></mml:mrow>Photocatalytic degradation of atrazine under visible light using Gd-doped ZnO prepared by supercritical antisolvent precipitation route. Catalysis Today, 2022, 397-399, 240-248.</mml:mrow </mml:msub>	4.4	16
96	Structural and Electrical Characterization of Sputter-Deposited Gd0.1Ce0.9O2â^î^ Thin Buffer Layers at the Y-Stabilized Zirconia Electrolyte Interface for IT-Solid Oxide Cells. Catalysts, 2018, 8, 571.	3.5	15
97	Room Temperature Synthesis of V-Doped TiO2 and Its Photocatalytic Activity in the Removal of Caffeine under UV Irradiation. Materials, 2019, 12, 911.	2.9	15
98	A green route for selective synthesis of styrene from ethylbenzene by means of a photocatalytic system. Research on Chemical Intermediates, 2013, 39, 4145-4157.	2.7	14
99	Photocatalytic activity of Eu-doped ZnO prepared by supercritical antisolvent precipitation route: When defects become virtues. Journal of Materials Science and Technology, 2022, 112, 49-58.	10.7	14
100	Investigation of the Deactivation Phenomena Occurring in the Cyclohexane Photocatalytic Oxidative Dehydrogenation on MoOx/TiO2 through Gas Phase and in situ DRIFTS Analyses. Catalysts, 2013, 3, 978-997.	3.5	13
101	Selective Oxidation of Cyclohexane to Benzene on Molybdena-Titania Catalysts in Fluidized Bed Photocatalytic Reactor. Studies in Surface Science and Catalysis, 2007, , 453-456.	1.5	12
102	Influence of operating parameters on gas phase photocatalytic oxidation of methyl-ethyl-ketone in a light emitting diode (LED)-fluidized bed reactor. Korean Journal of Chemical Engineering, 2015, 32, 636-642.	2.7	12
103	Intensification of a flat-plate photocatalytic reactor performances by innovative visible light modulation techniques: A proof of concept. Chemical Engineering and Processing: Process Intensification, 2017, 118, 117-123.	3.6	12
104	Photocatalytic degradation of atrazine by an N-doped TiO2/polymer composite: catalytic efficiency and toxicity evaluation. Journal of Environmental Chemical Engineering, 2022, 10, 108167.	6.7	12
105	Oxidative Decomposition of H2S over Alumina-Based Catalyst. Industrial & Engineering Chemistry Research, 2017, 56, 9072-9078.	3.7	11
106	Evaluation of N719 amount in TiO2 films for DSSC by thermogravimetric analysis. Journal of Thermal Analysis and Calorimetry, 2013, 111, 453-458.	3.6	10
107	Use of Visible Light Modulation Techniques in Urea Photocatalytic Degradation. Water (Switzerland), 2019, 11, 1642.	2.7	10
108	Photocatalytic Degradation of Thiacloprid Using Tri-Doped TiO2 Photocatalysts: A Preliminary Comparative Study. Catalysts, 2021, 11, 927.	3.5	10

#	Article	IF	CITATIONS
109	Developments and New Frontiers In Gas-Solid Photocatalytic Partial Oxidation of Hydrocarbons. Current Organic Chemistry, 2013, 17, 2420-2426.	1.6	9
110	Visible light driven mineralization of spiramycin over photostructured N-doped TiO 2 on up conversion phosphors. Journal of Environmental Sciences, 2017, 54, 268-276.	6.1	9
111	Catalytic system based on recyclable FeO and ZnS semiconductor for UV-promoted degradation of chlorinated organic compounds. Separation and Purification Technology, 2021, 270, 118830.	7.9	9
112	Heterogeneous Photo-Fenton Oxidation of Organic Pollutants on Structured Catalysts. Journal of Advanced Oxidation Technologies, 2012, 15, .	0.5	7
113	Photocatalytic properties of TiO2-functionalized tiles: influence of ceramic substrate. Research on Chemical Intermediates, 2015, 41, 7995-8007.	2.7	7
114	Photocatalytic propylene epoxidation on Bi2WO6-based photocatalysts. Research on Chemical Intermediates, 2015, 41, 4199-4212.	2.7	7
115	LaFeO3 Modified with Ni for Hydrogen Evolution via Photocatalytic Glucose Reforming in Liquid Phase. Catalysts, 2021, 11, 1558.	3.5	7
116	The use of nanocatalysts (and nanoparticles) for water and wastewater treatment by means of advanced oxidation processes. , 2020, , 241-264.		6
117	Catalytic oxidative decomposition of H2S over MoS2/γ-Al2O3. Fuel, 2020, 279, 118538.	6.4	6
118	Catalytic non-thermal plasma process for the degradation of organic pollutants in aqueous solution. Journal of Environmental Chemical Engineering, 2022, 10, 107841.	6.7	6
119	Honeycomb Structured Catalysts for H2 Production via H2S Oxidative Decomposition. Catalysts, 2018, 8, 488.	3.5	5
120	Supercritical Carbon Dioxide-Based Processes in Photocatalytic Applications. Molecules, 2021, 26, 2640.	3.8	5
121	Progress in Nanomaterials Applications for Water Purification. , 2017, , 1-24.		5
122	Heterogeneous photocatalysis. , 2020, , 285-301.		4
123	Non-Thermal Plasma-Assisted Catalytic Reactions for Environmental Protection. Catalysts, 2021, 11, 509.	3.5	4
124	Selective Catalytic Oxidation of Lean-H2S Gas Stream to Elemental Sulfur at Lower Temperature. Catalysts, 2021, 11, 746.	3.5	4
125	New Photoactive Materials Based on Zirconium Dioxide Doped with Rare Earth Metal Ions. Advanced Science Letters, 2017, 23, 5906-5908.	0.2	4
126	Catalytic Composite Systems Based on N-Doped TiO2/Polymeric Materials for Visible-Light-Driven Pollutant Degradation: A Mini Review. Photochem, 2021, 1, 330-344.	2.2	4

#	Article	IF	CITATIONS
127	Oxidative Dehydrogenation of Ethanol over Au/TiO2 Photocatalysts. Journal of Advanced Oxidation Technologies, 2012, 15, .	0.5	3
128	Phosphors-Based Photocatalysts for Wastewater Treatment. Environmental Chemistry for A Sustainable World, 2020, , 119-138.	0.5	3
129	Nanoporous polymeric aerogels–based structured photocatalysts for the removal of organic pollutant from water under visible or solar light. , 2020, , 99-120.		3
130	UV Light Driven Selective Oxidation of Cyclohexane in Gaseous Phase Using Mo-Functionalized Zeolites. Surfaces, 2019, 2, 546-559.	2.3	2
131	Visible Light Driven Degradation of Terephthalic Acid: Optimization of Energy Demand by Light Modulation Techniques. Journal of Photocatalysis, 2021, 2, 49-61.	0.4	2
132	Functionalization of Ceramic Tiles with N-doped TiO2 and Their Photocatalytic Function Under UV or Visible Light Irradiation. Journal of Advanced Oxidation Technologies, 2014, 17, .	0.5	1
133	Photo-fenton Oxidation of t-Butyl methyl ether in Presence of LaFeO3 Supported on Monolithic Structure. Journal of Advanced Oxidation Technologies, 2014, 17, .	0.5	1
134	Modeling of an Autothermal Reactor for the Catalytic Oxidative Decomposition of H2S to H2 and Sulfur. Industrial & Engineering Chemistry Research, 2019, 58, 10264-10270.	3.7	1
135	Membrane technology for photoelectrochemical hydrogen production. , 2020, , 291-306.		1
136	Synthesis and characterisation of novel catalyst Ag-TiO ₂ loaded on magnetic Algerian halloysite clay (Fe ₃ O ₄ -HKDD3) for the photocatalytic activity of methylene blue dye in an aqueous medium. International Journal of Environmental Analytical Chemistry, 2023, 103, 7697-7714.	3.3	1
137	H ₂ S Oxidative Decomposition Reaction in the Presence of CH ₄ over Metal-Sulfide-Based Catalysts: A Preliminary Investigation. Industrial & Engineering Chemistry Research, 2021, 60, 13802-13811.	3.7	1
138	TiO2 photocatalysis for environmental purposes. , 2021, , 583-608.		1
139	Visible-Light-Active Photocatalysts for Environmental Remediation and Organic Synthesis. Photochem, 2021, 1, 460-461.	2.2	1
140	Advances and Innovations in Photocatalysis. Environmental Chemistry for A Sustainable World, 2019, , 155-183.	0.5	0
141	Photocatalytic Removal of NO on Sulphated TiO2 in a Photocatalytic Fluidized Bed Reactor. Advanced Science Letters, 2017, 23, 5886-5888.	0.2	Ο