Veronika Ostatna

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/345117/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Electrochemistry of Nonconjugated Proteins and Glycoproteins. Toward Sensors for Biomedicine and Glycomics. Chemical Reviews, 2015, 115, 2045-2108.	23.0	273
2	Influence of ionic strength, pH and aptamer configuration for binding affinity to thrombin. Bioelectrochemistry, 2007, 70, 127-133.	2.4	254
3	Detection of aptamer–protein interactions using QCM and electrochemical indicator methods. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 291-295.	1.0	167
4	Recent progress in the applications of boron doped diamond electrodes in electroanalysis of organic compounds and biomolecules – A review. Analytica Chimica Acta, 2019, 1077, 30-66.	2.6	158
5	Electroactivity of Nonconjugated Proteins and Peptides. Towards Electroanalysis of All Proteins. Electroanalysis, 2007, 19, 2383-2403.	1.5	98
6	Changes in interfacial properties of α-synuclein preceding its aggregation. Analyst, The, 2008, 133, 76-84.	1.7	77
7	Native and denatured bovine serum albumin. D.c. polarography, stripping voltammetry and constant current chronopotentiometry. Journal of Electroanalytical Chemistry, 2006, 593, 172-178.	1.9	71
8	Enzyme nanoparticles-based electronic biosensor. Chemical Communications, 2005, , 3481.	2.2	69
9	Electrocatalytic Monitoring of Metal Binding and Mutation-Induced Conformational Changes in p53 at Picomole Level. Journal of the American Chemical Society, 2011, 133, 7190-7196.	6.6	69
10	Protein Structure-Sensitive Electrocatalysis at Dithiothreitol-Modified Electrodes. Journal of the American Chemical Society, 2010, 132, 9408-9413.	6.6	67
11	Effect of the immobilisation of DNA aptamers on the detection of thrombin by means of surface plasmon resonance. Analytical and Bioanalytical Chemistry, 2008, 391, 1861-1869.	1.9	65
12	Fabrication and Characterization of Solid Mercury Amalgam Electrodes for Protein Analysis. Analytical Chemistry, 2010, 82, 2690-2695.	3.2	56
13	Ionic strength-dependent structural transition of proteins at electrode surfaces. Chemical Communications, 2009, , 1685.	2.2	53
14	Electrocatalysis in proteins, nucleic acids and carbohydrates. Chemical Record, 2012, 12, 27-45.	2.9	49
15	Covalent Labeling of Nucleosides with VIII- and VI-Valent Osmium Complexes. Electroanalysis, 2007, 19, 1281-1287.	1.5	48
16	Biophysical properties and cellular toxicity of covalent crosslinked oligomers of α-synuclein formed by photoinduced side-chain tyrosyl radicals. Free Radical Biology and Medicine, 2012, 53, 1004-1015.	1.3	48
17	Potential-dependent surface denaturation of BSA in acid media. Analyst, The, 2009, 134, 2076.	1.7	46
18	Self-Assembled Monolayers of Thiol-End-Labeled DNA at Mercury Electrodes. Langmuir, 2006, 22, 6481-6484.	1.6	45

VERONIKA OSTATNA

#	Article	IF	CITATIONS
19	Native and denatured forms of proteins can be discriminated at edge plane carbon electrodes. Analytica Chimica Acta, 2012, 735, 31-36.	2.6	39
20	Electrochemical reduction and oxidation signals of angiotensin peptides. Role of individual amino acid residues. Electrochemistry Communications, 2013, 31, 80-83.	2.3	39
21	Constant Current Chronopotentiometry and Voltammetry of Native and Denatured Serum Albumin at Mercury and Carbon Electrodes. Electroanalysis, 2008, 20, 1406-1413.	1.5	38
22	Native, denatured and reduced BSA. Electrochimica Acta, 2008, 53, 4014-4021.	2.6	37
23	Electrochemical sensing of tumor suppressor protein p53–deoxyribonucleic acid complex stability at an electrified interface. Analytica Chimica Acta, 2014, 828, 1-8.	2.6	37
24	Voltammetry of Osmium End-Labeled Oligodeoxynucleotides at Carbon, Mercury, and Gold Electrodes. Electroanalysis, 2007, 19, 1334-1338.	1.5	33
25	Protein structural transition at negatively charged electrode surfaces. Effects of temperature and current density. Electrochimica Acta, 2015, 174, 356-360.	2.6	33
26	Label-free chronopotentiometric glycoprofiling of prostate specific antigen using sialic acid recognizing lectins. Bioelectrochemistry, 2017, 117, 89-94.	2.4	33
27	The detection of DNA deamination by electrocatalysis at DNA-modified electrodes. Bioelectrochemistry, 2005, 67, 205-210.	2.4	31
28	On the mechanism of hydrogen evolution catalysis by proteins: A case study with bovine serum albumin. Electrochimica Acta, 2011, 56, 9337-9343.	2.6	30
29	Polylysine atalyzed Hydrogen Evolution at Mercury Electrodes. Electroanalysis, 2010, 22, 2064-2070.	1.5	29
30	Catalysis of Hydrogen Evolution by Polylysine, Polyarginine and Polyhistidine at Mercury Electrodes. Electroanalysis, 2013, 25, 2130-2135.	1.5	29
31	Label-free electrochemical detection of singlet oxygen protein damage. Electrochimica Acta, 2016, 187, 662-669.	2.6	27
32	Interaction of Biomacromolecules with Surfaces Viewed by Electrochemical Methods. Electroanalysis, 2009, 21, 662-665.	1.5	26
33	Constant current chronopotentiometric stripping of sulphated polysaccharides. Electrochemistry Communications, 2009, 11, 2032-2035.	2.3	26
34	Interaction of singlet oxygen with bovine serum albumin and the role of the protein nano-compartmentalization. Free Radical Biology and Medicine, 2016, 94, 99-109.	1.3	25
35	Lysine, Arginine, and Histidine Residues in Peptide atalyzed Hydrogen Evolution at Mercury Electrodes. Electroanalysis, 2015, 27, 910-916.	1.5	24
36	Electrochemistry of riboflavin-binding protein and its interaction with riboflavin. Bioelectrochemistry, 2009, 76, 70-75.	2.4	23

VERONIKA OSTATNA

#	Article	IF	CITATIONS
37	Chronopotentiometric sensing of specific interactions between lysozyme and the DNA aptamer. Bioelectrochemistry, 2017, 114, 42-47.	2.4	21
38	Fast-scan cyclic voltammetry with thiol-modified mercury electrodes distinguishes native from denatured BSA. Electrochemistry Communications, 2015, 61, 114-116.	2.3	19
39	Effect of His6-tagging of anterior gradient 2 protein on its electro-oxidation. Electrochimica Acta, 2014, 150, 218-222.	2.6	18
40	Electrochemical sensing of concanavalin A and ovalbumin interaction in solution. Analytica Chimica Acta, 2016, 935, 97-103.	2.6	18
41	Electrochemical sensing of 2D condensation in amyloid peptides. Electrochimica Acta, 2013, 106, 43-48.	2.6	16
42	Electrochemical Responses of Thiolated Oligodeoxynucleotides in Cobalt-Containing Solutions. Electroanalysis, 2005, 17, 1413-1420.	1.5	15
43	Simple protein structure-sensitive chronopotentiometric analysis with dithiothreitol-modified Hg electrodes. Bioelectrochemistry, 2012, 87, 84-88.	2.4	14
44	Enzymatic activity and catalytic hydrogen evolution in reduced and oxidized urease at mercury surfaces. Analytica Chimica Acta, 2013, 789, 41-46.	2.6	14
45	Label-free electrochemical analysis of purine nucleotides and nucleobases at disposable carbon electrodes in microliter volumes. Journal of Electroanalytical Chemistry, 2019, 847, 113252.	1.9	14
46	Simultaneous voltammetric determination of free tryptophan, uric acid, xanthine and hypoxanthine in plasma and urine. Electrochimica Acta, 2020, 329, 135132.	2.6	13
47	The study of the binding of globular proteins to DNA using mass detection and electrochemical indicator methods. Journal of Electroanalytical Chemistry, 2004, 564, 19-24.	1.9	12
48	Chronopotentiometric sensing of anterior gradient 2 protein. Electrochimica Acta, 2017, 240, 250-257.	2.6	12
49	Electrodeposited silver amalgam particles on pyrolytic graphite in (spectro)electrochemical detection of 4-nitrophenol, DNA and green fluorescent protein. Bioelectrochemistry, 2020, 132, 107436.	2.4	10
50	Electrochemical sensing of interaction of anterior gradient-2 protein with peptides at a charged interface. Electrochimica Acta, 2018, 269, 70-75.	2.6	9
51	Changes of electrocatalytic response of bovine serum albumin after its methylation and acetylation. Journal of Electroanalytical Chemistry, 2018, 821, 97-103.	1.9	9
52	AGR2-AGR3 hetero-oligomeric complexes: Identification and characterization. Bioelectrochemistry, 2021, 140, 107808.	2.4	8
53	Modification of a Mercury Electrode with Different Thioalkanes: Structure ensitive Bovine Serum Albumin Analysis. ChemElectroChem, 2018, 5, 1373-1379.	1.7	7
54	Chronopotentiometric Analysis of Proteins at Charged Electrode Surfaces. Electroanalysis, 2019, 31, 1868-1872.	1.5	7

VERONIKA OSTATNA

#	Article	IF	CITATIONS
55	Distinguishing the glycan isomers 2,3-sialyllactose and 2,6-sialyllactose by voltammetry after modification with osmium(VI) complexes. Analytica Chimica Acta, 2019, 1067, 56-62.	2.6	7
56	Effects of ex situ chronopotentiometric analysis on stability of bovine serum albumin on mercury electrodes. Journal of Electroanalytical Chemistry, 2020, 860, 113884.	1.9	6
57	Adsorption/desorption behavior of hyaluronic acid fragments at charged hydrophobic surface. Carbohydrate Polymers, 2022, 277, 118831.	5.1	6
58	Electrochemical Analysis of Glycoprotein Samples Prepared on a Pneumatically ontrolled Microfluidic Device. Electroanalysis, 2019, 31, 1994-2000.	1.5	5
59	BSAâ€Polysaccharide Interactions at Negatively Charged Electrode Surface. Effects of Current Density Electroanalysis, 2019, 31, 2007-2011.	1.5	4
60	Anterior gradient-3 protein-antibody interaction at charged interfaces. Label-free chronopotentiometric sensing. Electrochimica Acta, 2019, 297, 974-979.	2.6	4
61	Catalytic and redox activity of nucleic acids at mercury electrodes: Roles of nucleobase residues. Journal of Electroanalytical Chemistry, 2020, 858, 113812.	1.9	4
62	Electrochemical Renewal of Stationary Mercury Drop or Meniscus Electrodes. Electroanalysis, 2009, 21, 625-630.	1.5	3
63	Influence of Protein Modification and Glycosylation in the Catalytic Hydrogen Evolution Reaction of Avidin and Neutravidin: An Electrochemical Analysis. ChemPlusChem, 2020, 85, 1347-1353.	1.3	3
64	Cyclic and square wave voltammetry of chitooligosaccharides modified by osmium(VI) tetramethylethylenediamine. Bioelectrochemistry, 2020, 133, 107494.	2.4	3
65	Voltammetric sensing of glycans modified by osmium(VI)ligand complexes. The influence of N-acetyl neuraminic acid. Electrochimica Acta, 2021, 369, 137658.	2.6	3
66	Interfacial properties of p53-DNA complexes containing various recognition elements. Journal of Electroanalytical Chemistry, 2019, 848, 113300.	1.9	2
67	Intrinsic Electrocatalysis of RNA as a Labelâ€free and Reagentâ€less Tool for Detection of MicroRNAs. Electroanalysis, 2019, 31, 1895-1900.	1.5	2
68	Chronopotentiometric sensing of native, oligomeric, denatured and aggregated serum albumin at charged surfaces. Bioelectrochemistry, 2022, 145, 108100.	2.4	2
69	Constant-current chronopotentiometric stripping detection of bovine serum albumin on silver amalgam particles. Journal of Electroanalytical Chemistry, 2020, 859, 113854.	1.9	1
70	Fetuin and asialofetuin at charged surfaces: Influence of sialic acid presence. Journal of Electroanalytical Chemistry, 2021, 902, 115801.	1.9	1
71	Electrochemical sensing of proteins and carbohydrates. , 2010, , .		0
72	Oxidative Modification of Alpha-Synuclein Modifies its Cytotoxicity. Biophysical Journal, 2012, 102, 254a.	0.2	0

#	Article	IF	CITATIONS
73	Chronopotentiometric Analysis of Single Histones and Histone Octamer at Charged Surfaces. ChemElectroChem, 2021, 8, 3360-3365.	1.7	0