
J Ole Becker

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3450872/publications.pdf Version: 2024-02-01

LOIF RECKED

#	Article	IF	CITATIONS
1	Pacific shootâ€gall disease control in annual bluegrass putting greens using a new formulation of abamectin. Itsrj, 2022, 14, 883-892.	0.3	0
2	Fluazaindolizine mitigates plant-parasitic nematode activity at sublethal dosages. Journal of Pest Science, 2021, 94, 573-583.	3.7	17
3	<i>Hyalorbilia oviparasitica</i> Clade Detected in Field Soils Cropped to Sugar Beets and Enriched in the Presence of <i>Heterodera schachtii</i> and a Host Crop. PhytoFrontiers, 2021, 1, 13-20.	1.6	4
4	Detection of Nematophagous Fungi from <i>Heterodera schachtii</i> Females Using a Baiting Experiment with Soils Cropped to <i>Brassica</i> Species from California's Central Coast. PhytoFrontiers, 2021, 1, 4-12.	1.6	4
5	The Evaluation of Egg-Parasitic Fungi Paraboeremia taiwanensis and Samsoniella sp. for the Biological Control of Meloidogyne enterolobii on Chinese Cabbage. Microorganisms, 2020, 8, 828.	3.6	9
6	The role of phosphorus in growing tomatoes in near water-saturated soil. Journal of Plant Nutrition, 2020, 43, 1091-1103.	1.9	1
7	Fluopyram Controls Shoot-galling Caused by Pacific Shoot-gall Nematode and Improves Turf Quality in Annual Bluegrass Putting Greens. HortTechnology, 2020, 30, 709-718.	0.9	3
8	Effect of Heterodera schachtii female age on susceptibility to three fungal hyperparasites in the genus Hyalorbilia. Journal of Nematology, 2020, 52, 1-12.	0.9	2
9	Multi-Year Field Evaluation of Fluorinated Nematicides Against <i>Meloidogyne incognita</i> in Carrots. Plant Disease, 2019, 103, 2392-2396.	1.4	25
10	Efficacy of new nematicides for managing <i>Meloidogyne incognita</i> in tomato crop. Journal of Phytopathology, 2019, 167, 295-298.	1.0	31
11	Control of <i>Meloidogyne incognita</i> in sweetpotato with fluensulfone. Journal of Nematology, 2019, 51, 1-8.	0.9	11
12	Biocontrol of plant diseases is not an unsafe technology!. Journal of Plant Diseases and Protection, 2018, 125, 121-125.	2.9	31
13	Soil biological and physiochemical factors limiting the growth potential of tomato planted in waterlogged volcanic soil. Journal of Plant Nutrition, 2018, 41, 2151-2169.	1.9	2
14	Temperature-dependent effects of soil amendment with crop residues on suppression of Rhizoctonia damping-off of sugar beet. Plant and Soil, 2013, 366, 467-477.	3.7	3
15	Dactylella oviparasitica parasitism of the sugar beet cyst nematode observed in trixenic culture plates. Biological Control, 2013, 64, 51-56.	3.0	15
16	Effect of Films on 1,3-Dichloropropene and Chloropicrin Emission, Soil Concentration, and Root-Knot Nematode Control in a Raised Bed. Journal of Agricultural and Food Chemistry, 2013, 61, 2400-2406.	5.2	14
17	Correlations between Root-Associated Microorganisms and Peach Replant Disease Symptoms in a California Soil. PLoS ONE, 2012, 7, e46420.	2.5	75
18	Effects of soil pH on rhizoctonia damping-off of sugar beet and disease suppression induced by soil amendment with crop residues. Plant and Soil, 2011, 347, 255-268.	3.7	31

J OLE BECKER

#	Article	IF	CITATIONS
19	Survival of Plant Pathogens in Static Piles of Ground Green Waste. Phytopathology, 2008, 98, 547-554.	2.2	12
20	ldentifying Microorganisms Involved in Specific Pathogen Suppression in Soil. Annual Review of Phytopathology, 2007, 45, 153-172.	7.8	110
21	DELIVERY OF GASES VIA DRIP IRRIGATION TUBING: AN EXPLORATORY STUDY. Acta Horticulturae, 2007, , 69-76.	0.2	0
22	Suppression of the Plant-Parasitic Nematode Heterodera schachtii by the Fungus Dactylella oviparasitica. Phytopathology, 2006, 96, 111-114.	2.2	41
23	Induction of Beet-Cyst Nematode Suppressiveness by the Fungi Dactylella oviparasitica and Fusarium oxysporum in Field Microplots. Phytopathology, 2006, 96, 855-859.	2.2	24
24	Fumigant combinations for Cyperus esculentum L control. Pest Management Science, 2004, 60, 369-374.	3.4	33
25	Degradation and Adsorption of Fosthiazate in Soil. Journal of Agricultural and Food Chemistry, 2004, 52, 6239-6242.	5.2	56
26	An experimental approach for identifying microorganisms involved in specified functions: utilisation for understanding a nematode suppressive soil. Australasian Plant Pathology, 2004, 33, 151.	1.0	9
27	Incorporation of Fumigants into Soil Organic Matter. Environmental Science & Technology, 2003, 37, 1288-1291.	10.0	15
28	Identification of Fungal rDNA Associated with Soil Suppressiveness Against Heterodera schachtii Using Oligonucleotide Fingerprinting. Phytopathology, 2003, 93, 1006-1013.	2.2	49
29	Bacterial rRNA Genes Associated with Soil Suppressiveness against the Plant-Parasitic Nematode Heterodera schachtii. Applied and Environmental Microbiology, 2003, 69, 1573-1580.	3.1	46
30	â€~Candidatus Pasteuria usgae' sp. nov., an obligate endoparasite of the phytoparasitic nematode Belonolaimus longicaudatus. International Journal of Systematic and Evolutionary Microbiology, 2003, 53, 197-200.	1.7	68
31	Identification of root-knot nematode suppressive soils. Applied Soil Ecology, 2002, 19, 51-56.	4.3	40
32	Degradation of Soil Fumigants as Affected by Initial Concentration and Temperature. Journal of Environmental Quality, 2001, 30, 1278-1286.	2.0	43
33	Evaluation of propargyl bromide for control of barnyardgrass andFusarium oxysporum in three soils. Pest Management Science, 2001, 57, 781-786.	3.4	17
34	Impact of soil suppressiveness on various population densities of Heterodera schachtii. Annals of Applied Biology, 2001, 138, 371-376.	2.5	11
35	Soil suppressiveness to Heterodera schachtii under different cropping sequences. Nematology, 2001, 3, 551-558.	0.6	25
36	Population Dynamics of the Sting Nematode in California Turfgrass. Plant Disease, 2000, 84, 1081-1084.	1.4	12

J OLE BECKER

#	Article	IF	CITATIONS
37	Transfer of Biological Soil Suppressiveness Against Heterodera schachtii. Phytopathology, 2000, 90, 401-406.	2.2	40
38	Surface application of ammonium thiosulfate fertilizer to reduce volatilization of 1,3-dichloropropene from soil. Pest Management Science, 2000, 56, 264-270.	3.4	35
39	Efficacy of methyl iodide and synergy with chloropicrin for control of fungi. Pest Management Science, 2000, 56, 413-418.	3.4	43
40	Nematode response to methyl bromide and 1,3-dichloropropene soil fumigation at different temperatures. Pest Management Science, 2000, 56, 737-742.	3.4	14
41	Column System for Concurrent Assessment of Emission Potential and Pest Control of Soil Fumigants. Journal of Environmental Quality, 2000, 29, 657-661.	2.0	15
42	Transformation of 1,3â€Dichloropropene in Soil by Thiosulfate Fertilizers. Journal of Environmental Quality, 2000, 29, 1476-1481.	2.0	29
43	Efficacy of methyl iodide soil fumigation for control of Meloidogyne incognita, Tylenchulus semipenetrans and Heterodera schachtii. Nematology, 1999, 1, 407-414.	0.6	19
44	Biological Suppression and Natural Population Decline of Heterodera schachtii in a California Field. Phytopathology, 1999, 89, 434-440.	2.2	72
45	Evaluation of Methyl Iodide as a Soil Fumigant for Root-Knot Nematode Control in Carrot Production. Plant Disease, 1999, 83, 33-36.	1.4	25
46	Effect of soil physical factors on methyl iodide and methyl bromide. Pest Management Science, 1998, 53, 71-79.	0.4	24
47	Surface Amendment of Fertilizer Ammonium Thiosulfate To Reduce Methyl Bromide Emission from Soil. Environmental Science & Technology, 1998, 32, 2438-2441.	10.0	44
48	Acceleration of 1,3â€Dichloropropene Degradation by Organic Amendments and Potential Application for Emissions Reduction. Journal of Environmental Quality, 1998, 27, 408-414.	2.0	59
49	Methyl Bromide Emission Reduction with Field Management Practices. Environmental Science & Technology, 1997, 31, 3017-3022.	10.0	33
50	Dose response of weeds to methyl iodide and methyl bromide. Weed Research, 1997, 37, 181-189.	1.7	31
51	Control of soil-borne pathogens with living bacteria and fungi: Status and outlook. Pest Management Science, 1993, 37, 355-363.	0.4	62
52	Effect of Rhizobacteria and Metham-Sodium on Growth and Root Microflora of Celery Cultivars. Phytopathology, 1990, 80, 206.	2.2	10
53	Effects of Rhizobacteria on Root-Knot Nematodes and Gall Formation. Phytopathology, 1988, 78, 1466.	2.2	78
54	Role of Siderophores in Suppression of <i>Pythium</i> Species and Production of Increased-Growth Response of Wheat by Fluorescent Pseudomonads. Phytopathology, 1988, 78, 778.	2.2	122

J OLE BECKER

#	Article	IF	CITATIONS
55	A convenient autoradiographic technique for study of uptake of minerals by plant roots and the effects of environmental factors upon the process. Plant and Soil, 1986, 92, 299-302.	3.7	5
56	Diverse Effects of Some Bacterial Siderophores on the Uptake of Iron by Plants. , 1986, , 61-70.		7
57	Inhibitory Effect of Pseudobactin on the Uptake of Iron by Higher Plants. Applied and Environmental Microbiology, 1985, 49, 1090-1093.	3.1	56
58	Fruit and Citrus Trees. Agronomy, 0, , 637-684.	0.2	11