List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3450788/publications.pdf Version: 2024-02-01

HENSIN TSAO

#	Article	IF	CITATIONS
1	Factors associated with suspected nonmelanoma skin cancers, dysplastic nevus, and cutaneous melanoma among first-time SpotMe screening program participants during 2009-2010. Journal of the American Academy of Dermatology, 2023, 88, 60-70.	1.2	6
2	Oncogenic KIT Induces Replication Stress and Confers Cell Cycle Checkpoint Vulnerability in Melanoma. Journal of Investigative Dermatology, 2022, 142, 1413-1424.e6.	0.7	3
3	A geographically based cross-sectional analysis of SPOT me skin cancer screening data. Journal of the American Academy of Dermatology, 2021, 84, 809-810.e3.	1.2	Ο
4	Surgical delay and mortality for primary cutaneous melanoma. Journal of the American Academy of Dermatology, 2021, 84, 1089-1091.	1.2	8
5	The State of Melanoma: Emergent Challenges and Opportunities. Clinical Cancer Research, 2021, 27, 2678-2697.	7.0	53
6	Patient-identified early clinical warning signs of nodular melanoma: a qualitative study. BMC Cancer, 2021, 21, 371.	2.6	5
7	Loss of ACK1 Upregulates EGFR and Mediates Resistance to BRAF Inhibition. Journal of Investigative Dermatology, 2021, 141, 1317-1324.e1.	0.7	9
8	The spectrum of morphologic patterns of nodular melanoma: a study of the International Dermoscopy Society. Journal of the European Academy of Dermatology and Venereology, 2021, 35, e762-e765.	2.4	4
9	Melanoma genomics: a stateâ€ofâ€theâ€art review of practical clinical applications*. British Journal of Dermatology, 2021, 185, 272-281.	1.5	12
10	Recognition, Staging, and Management of Melanoma. Medical Clinics of North America, 2021, 105, 643-661.	2.5	4
11	Germline ATM variants predispose to melanoma: a joint analysis across the GenoMEL and MelaNostrum consortia. Genetics in Medicine, 2021, 23, 2087-2095.	2.4	19
12	Melanoma medicine in the new millennium. British Journal of Dermatology, 2021, 185, 239-240.	1.5	0
13	The Molecular Context of Vulnerability for CDK9 Suppression in Triple Wild-Type Melanoma. Journal of Investigative Dermatology, 2021, 141, 2018-2027.e4.	0.7	8
14	Effect of the COVID-19 Pandemic on Delayed Skin Cancer Services. Dermatologic Clinics, 2021, 39, 627-637.	1.7	21
15	Unsupervised Phenotype-Based Clustering of Clinicopathologic Features in Cutaneous Melanoma. JID Innovations, 2021, 1, 100047.	2.4	1
16	Abstract P117: Oncogenic Kit induces replication stress and induces Chk1/ATR inhibitor sensitivity in melanoma. , 2021, , .		0
17	Number needed to screen for presumptive screening diagnoses among first-time SPOTme screening participants (1992-2010). Journal of the American Academy of Dermatology, 2020, 82, 233-234.	1.2	3
18	Classifying Melanoma by TERT Promoter Mutational Status. Journal of Investigative Dermatology, 2020, 140, 390-394.e1.	0.7	16

#	Article	IF	CITATIONS
19	Consensus, Controversy, and Conversations About Gene Expression Profiling in Melanoma. JAMA Dermatology, 2020, 156, 949.	4.1	6
20	Cancer risks associated with the germline MITF(E318K) variant. Scientific Reports, 2020, 10, 17051.	3.3	20
21	Hypoxia and HIF-1Î \pm Regulate Collagen Production in Keloids. Journal of Investigative Dermatology, 2020, 140, 2157-2165.	0.7	39
22	KIT and Melanoma: Biological Insights and Clinical Implications. Yonsei Medical Journal, 2020, 61, 562.	2.2	67
23	The X-Linked DDX3X RNA Helicase Dictates Translation Reprogramming and Metastasis in Melanoma. Cell Reports, 2019, 27, 3573-3586.e7.	6.4	66
24	BRCA1â€associated protein (BAP1)â€inactivated melanocytic tumors. Journal of Cutaneous Pathology, 2019, 46, 965-972.	1.3	38
25	Burden of unique and low prevalence somatic mutations correlates with cancer survival. Scientific Reports, 2019, 9, 4848.	3.3	49
26	Case–control analysis identifies shared properties of rare germline variation in cancer predisposing genes. European Journal of Human Genetics, 2019, 27, 824-828.	2.8	4
27	Use of Targeted Next-Generation Sequencing to Identify Activating Hot Spot Mutations in Cherry Angiomas. JAMA Dermatology, 2019, 155, 211.	4.1	22
28	Growth suppression by dual BRAF(V600E) and NRAS(Q61) oncogene expression is mediated by SPRY4 in melanoma. Oncogene, 2019, 38, 3504-3520.	5.9	11
29	Guidelines of care for the management of primary cutaneous melanoma. Journal of the American Academy of Dermatology, 2019, 80, 208-250.	1.2	400
30	Clinical spectrum of cutaneous melanoma morphology. Journal of the American Academy of Dermatology, 2019, 80, 178-188.e3.	1.2	21
31	A Case of Nivolumab-Induced Cutaneous Toxicity with Multiple Morphologies. Dermatopathology (Basel, Switzerland), 2019, 6, 255-259.	1.5	9
32	Selective uveal melanoma inhibition with calcium channel blockade. International Journal of Oncology, 2019, 55, 1090-1096.	3.3	10
33	Contrasting features of childhood and adolescent melanomas. Pediatric Dermatology, 2018, 35, 354-360.	0.9	26
34	High MITF Expression Is Associated with Super-Enhancers and Suppressed by CDK7 Inhibition in Melanoma. Journal of Investigative Dermatology, 2018, 138, 1582-1590.	0.7	46
35	Cutaneous Presentation of Mesothelioma With a Sarcomatoid Transformation. American Journal of Dermatopathology, 2018, 40, 378-382.	0.6	3
36	Comprehensive Study of the Clinical Phenotype of Germline <i>BAP1</i> Variant-Carrying Families Worldwide. Journal of the National Cancer Institute, 2018, 110, 1328-1341.	6.3	164

#	Article	IF	CITATIONS
37	The first 30Âyears of the American Academy of Dermatology skin cancer screening program: 1985-2014. Journal of the American Academy of Dermatology, 2018, 79, 884-891.e3.	1.2	46
38	Recent Advances in Melanoma and Melanocyte Biology. Journal of Investigative Dermatology, 2017, 137, 557-560.	0.7	12
39	Introduction to JID's Landmarks inÂtheÂMolecular Revolution. Journal of Investigative Dermatology, 2017, 137, 996.	0.7	0
40	Somatic driver mutations in melanoma. Cancer, 2017, 123, 2104-2117.	4.1	96
41	Rare Variant, Gene-Based Association Study of Hereditary Melanoma Using Whole-Exome Sequencing. Journal of the National Cancer Institute, 2017, 109, .	6.3	32
42	Cutaneous melanoma in women. International Journal of Women's Dermatology, 2017, 3, S11-S15.	2.0	29
43	Genotypic and Phenotypic Features of BAP1 Cancer Syndrome. JAMA Dermatology, 2017, 153, 999.	4.1	86
44	Epidemiology of Melanoma. , 2017, , 591-611.		2
45	Betaâ€catenin causes fibrotic changes in the extracellular matrix via upregulation of collagen I transcription. British Journal of Dermatology, 2017, 177, 312-315.	1.5	10
46	Telomerase reverse transcriptase (TERT) promoter mutations in Korean melanoma patients. American Journal of Cancer Research, 2017, 7, 134-138.	1.4	6
47	In vivo coherent Raman imaging of the melanomagenesis-associated pigment pheomelanin. Scientific Reports, 2016, 6, 37986.	3.3	33
48	Defining Clonal Color in Fluorescent Multi-Clonal Tracking. Scientific Reports, 2016, 6, 24303.	3.3	10
49	Reply to: "The absence of multiple atypical nevi in germline CDKN2A mutations― Journal of the American Academy of Dermatology, 2016, 75, e159.	1.2	0
50	New Insights into the Molecular Distinction of Dysplastic Nevi and Common Melanocytic Nevi—Highlighting the Keratinocyte-Melanocyte Relationship. Journal of Investigative Dermatology, 2016, 136, 1933-1935.	0.7	4
51	Visual Inspection and the US Preventive Services Task Force Recommendation on Skin Cancer Screening. JAMA - Journal of the American Medical Association, 2016, 316, 398.	7.4	18
52	The state of melanoma: challenges and opportunities. Pigment Cell and Melanoma Research, 2016, 29, 404-416.	3.3	77
53	Hereditary melanoma: Update on syndromes and management. Journal of the American Academy of Dermatology, 2016, 74, 411-420.	1.2	60
54	Hereditary melanoma: Update on syndromes and management. Journal of the American Academy of Dermatology, 2016, 74, 395-407.	1.2	158

HENSIN TSAO

#	Article	IF	CITATIONS
55	Promoter Methylation of PTEN Is a Significant Prognostic Factor in Melanoma Survival. Journal of Investigative Dermatology, 2016, 136, 1002-1011.	0.7	51
56	A novel multi-CDK inhibitor P1446A-05 restricts melanoma growth and produces synergistic effects in combination with MAPK pathway inhibitors. Cancer Biology and Therapy, 2016, 17, 778-784.	3.4	8
57	Genetics of melanocytic nevi. Pigment Cell and Melanoma Research, 2015, 28, 661-672.	3.3	135
58	Melanoma-associated naevi: precursors or coincidence?. British Journal of Dermatology, 2015, 173, 633-634.	1.5	2
59	Concerns About Presence of a Wild-Type <i>BAP1</i> Allele in Absence of Nuclear Protein Expression—Reply. JAMA Dermatology, 2015, 151, 1266.	4.1	0
60	A recurrent germline <i><scp>BAP1</scp></i> mutation and extension of the <i><scp>BAP1</scp></i> tumor predisposition spectrum to include basal cell carcinoma. Clinical Genetics, 2015, 88, 267-272.	2.0	81
61	Clinical Significance of Microscopic Melanoma Metastases in the Nonhottest Sentinel Lymph Nodes. JAMA Surgery, 2015, 150, 465.	4.3	9
62	Cutaneous melanoma in women. International Journal of Women's Dermatology, 2015, 1, 21-25.	2.0	12
63	EPHA2 Is a Mediator of Vemurafenib Resistance and a Novel Therapeutic Target in Melanoma. Cancer Discovery, 2015, 5, 274-287.	9.4	107
64	Ligand-Independent EPHA2 Signaling Drives the Adoption of a Targeted Therapy–Mediated Metastatic Melanoma Phenotype. Cancer Discovery, 2015, 5, 264-273.	9.4	82
65	Reply to: "The ABCDs of melanoma—A complicated morphologic message not intended for the general public― Journal of the American Academy of Dermatology, 2015, 73, e61.	1.2	0
66	Targeted Therapies in Melanoma: Translational Research at Its Finest. Journal of Investigative Dermatology, 2015, 135, 1929-1933.	0.7	12
67	Oncogene-directed small molecule inhibitors for the treatment of cutaneous melanoma. Melanoma Management, 2015, 2, 133-147.	0.5	3
68	MITF Modulates Therapeutic Resistance through EGFR Signaling. Journal of Investigative Dermatology, 2015, 135, 1863-1872.	0.7	76
69	Multiple Cutaneous Melanomas and Clinically Atypical Moles in a Patient With a Novel Germline <i>BAP1</i> Mutation. JAMA Dermatology, 2015, 151, 1235.	4.1	20
70	Gender Disparity and Mutation Burden in Metastatic Melanoma. Journal of the National Cancer Institute, 2015, 107, djv221.	6.3	114
71	BAP1 Has a Survival Role in Cutaneous Melanoma. Journal of Investigative Dermatology, 2015, 135, 1089-1097.	0.7	31
72	Outcome of patients with de novo versus nevus-associated melanoma. Journal of the American Academy of Dermatology, 2015, 72, 54-58.	1.2	71

#	Article	IF	CITATIONS
73	Molecular stratification of metastatic melanoma using gene expression profiling : Prediction of survival outcome and benefit from molecular targeted therapy. Oncotarget, 2015, 6, 12297-12309.	1.8	148
74	Epidermal, Sebaceous, and Melanocytic Nevoid Proliferations Are Spectrums of Mosaic RASopathies. Journal of Investigative Dermatology, 2014, 134, 2493-2496.	0.7	21
75	Opening the melanoma black box. British Journal of Dermatology, 2014, 170, 9-10.	1.5	0
76	Melanoma: Clinical Features and Genomic Insights. Cold Spring Harbor Perspectives in Medicine, 2014, 4, a015388-a015388.	6.2	42
77	The utility of re-excising mildly and moderately dysplastic nevi: A retrospective analysis. Journal of the American Academy of Dermatology, 2014, 71, 1071-1076.	1.2	31
78	Melanocytes Are Selectively Vulnerable to UVA-Mediated Bystander Oxidative Signaling. Journal of Investigative Dermatology, 2014, 134, 1083-1090.	0.7	24
79	Commentary: Molecular testing in melanoma. Journal of the American Academy of Dermatology, 2014, 70, 863-870.	1.2	4
80	Current status and future directions of molecularly targeted therapies and immunotherapies for melanoma. Seminars in Cutaneous Medicine and Surgery, 2014, 33, 60-67.	1.6	20
81	Vemurafenib Synergizes with Nutlin-3 to Deplete Survivin and Suppresses Melanoma Viability and Tumor Growth. Clinical Cancer Research, 2013, 19, 4383-4391.	7.0	33
82	p53 Rescue through HDM2 Antagonism Suppresses Melanoma Growth and Potentiates MEK Inhibition. Journal of Investigative Dermatology, 2012, 132, 356-364.	0.7	66
83	Molecular Profiling Reveals Low- and High-Grade Forms of Primary Melanoma. Clinical Cancer Research, 2012, 18, 4026-4036.	7.0	96
84	Melanoma: from mutations to medicine. Genes and Development, 2012, 26, 1131-1155.	5.9	415
85	A novel recurrent mutation in MITF predisposes to familial and sporadic melanoma. Nature, 2011, 480, 99-103.	27.8	413
86	Case 30-2010. New England Journal of Medicine, 2010, 363, 1352-1360.	27.0	0
87	Melanoma Genetics and Therapeutic Approaches in the 21st Century: Moving from the Benchside to the Bedside. Journal of Investigative Dermatology, 2008, 128, 2575-2595.	0.7	157
88	Ultraviolet radiation and melanoma: a systematic review and analysis of reported sequence variants. Human Mutation, 2007, 28, 578-588.	2.5	222
89	High-risk Melanoma Susceptibility Genes and Pancreatic Cancer, Neural System Tumors, and Uveal Melanoma across GenoMEL. Cancer Research, 2006, 66, 9818-9828.	0.9	373
90	Expression Profiling of UVB Response in Melanocytes Identifies a Set of p53-Target Genes. Journal of Investigative Dermatology, 2006, 126, 2490-2506.	0.7	86

#	Article	IF	CITATIONS
91	The SNPs of RAF. Journal of Investigative Dermatology, 2005, 125, xiv-xv.	0.7	1
92	Melanoma Treatment Update. Dermatologic Clinics, 2005, 23, 323-333.	1.7	23
93	Case 7-2004. New England Journal of Medicine, 2004, 350, 924-932.	27.0	9
94	Early Detection of Asymptomatic Pulmonary Melanoma Metastases by RoutineChest Radiographs Is Not Associated With Improved Survival. Archives of Dermatology, 2004, 140, 67-70.	1.4	45
95	Genetic Interaction Between NRAS and BRAF Mutations and PTEN/MMAC1 Inactivation in Melanoma. Journal of Investigative Dermatology, 2004, 122, 337-341.	0.7	411
96	Management of Cutaneous Melanoma. New England Journal of Medicine, 2004, 351, 998-1012.	27.0	735
97	PTEN expression in normal skin, acquired melanocytic nevi, and cutaneous melanoma. Journal of the American Academy of Dermatology, 2003, 49, 865-872.	1.2	103
98	The Transformation Rate of Moles (Melanocytic Nevi) Into Cutaneous Melanoma. Archives of Dermatology, 2003, 139, 282.	1.4	282
99	Cutaneous Melanomas Associated With Nevi. Archives of Dermatology, 2003, 139, 1620.	1.4	224
100	A single-institution case series of patients with cutaneous melanoma and non-Hodgkin's lymphoma. Journal of the American Academy of Dermatology, 2002, 46, 55-61.	1.2	15
101	Hypopigmentation Associated With an Adenovirus-Mediated gp100/MART-1–Transduced Dendritic Cell Vaccine for Metastatic Melanoma. Archives of Dermatology, 2002, 138, 799-802.	1.4	42
102	Evidence for an association between cutaneous melanoma and non-Hodgkin lymphoma. Cancer, 2001, 91, 874-880.	4.1	61
103	A meta-analysis of reverse transcriptase-polymerase chain reaction for tyrosinase mRNA as a marker for circulating tumor cells in cutaneous melanoma. Archives of Dermatology, 2001, 137, 325-30.	1.4	39
104	Relative reciprocity of NRAS and PTEN/MMAC1 alterations in cutaneous melanoma cell lines. Cancer Research, 2000, 60, 1800-4.	0.9	185
105	Update on familial cancer syndromes and the skin. Journal of the American Academy of Dermatology, 2000, 42, 939-69; quiz 970-2.	1.2	11
106	Mutational and expression analysis of the p73 gene in melanoma cell lines. Cancer Research, 1999, 59, 172-4.	0.9	34
107	American Academy of Dermatology 1999 Awards for Young Investigators in Dermatology. Targets of genetic injury in cutaneous melanoma. Journal of the American Academy of Dermatology, 1999, 41, 459-61.	1.2	0
108	Identification of PTEN/MMAC1 alterations in uncultured melanomas and melanoma cell lines. Oncogene, 1998, 16, 3397-3402.	5.9	224

#	Article	IF	CITATIONS
109	Novel mutations in the p16/CDKN2A binding region of the cyclin-dependent kinase-4 gene. Cancer Research, 1998, 58, 109-13.	0.9	56
110	Epithelioid Sarcoma Presenting as a Benign Foot Ulcer. Journal of Cutaneous Medicine and Surgery, 1997, 1, 232-234.	1.2	0
111	Ultra-late recurrence (15 years or longer) of cutaneous melanoma. Cancer, 1997, 79, 2361-2370.	4.1	142
112	Lack of phospholipase A2 mutations in neuroblastoma, melanoma and colon-cancer cell lines. , 1997, 72, 337-339.		16
113	Ultraâ€late recurrence (15 years or longer) of cutaneous melanoma. Cancer, 1997, 79, 2361-2370.	4.1	5
114	Ultra-late recurrence (15 years or longer) of cutaneous melanoma. Cancer, 1997, 79, 2361-70.	4.1	32