Saburo Neya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3450483/publications.pdf

Version: 2024-02-01

		623734	713466
39	523	14	21
papers	citations	h-index	g-index
39	39	39	529
all docs	docs citations	times ranked	citing authors

#	Article	IF	Citations
1	Nature of a H ₂ O Molecule Confined in the Hydrophobic Interface between the Heme and G-Quartet Planes in a Heme–DNA Complex. Biochemistry, 2022, 61, 523-534.	2.5	5
2	Reversible Redox System of 2â€Oxypyritriphyrin(1.2.1) Accompanying Interconversion between 3â€Pyridone and 3â€Hydroxypyridine Units. Chemistry - an Asian Journal, 2021, 16, 1077-1080.	3.3	3
3	Effects of Heme Electronic Structure and Local Heme Environment on Catalytic Activity of a Peroxidase-Mimicking Heme–DNAzyme. Inorganic Chemistry, 2021, 60, 11206-11213.	4.0	9
4	Effect of the Electron Density of the Heme Fe Atom on the Nature of Fe–O2 Bonding in Oxy Myoglobin. Inorganic Chemistry, 2021, 60, 1021-1027.	4.0	3
5	Characterization of Structure and Catalytic Activity of a Complex between Heme and an All Parallel-Stranded Tetrameric G-Quadruplex Formed from DNA/RNA Chimera Sequence d(TTA)r(GGG)dT. Bulletin of the Chemical Society of Japan, 2020, 93, 621-629.	3.2	11
6	Deprotection of a benzyl unit induces a $22\ddot{\mathbb{I}}\in$ aromatic macrocycle of 3-oxypyripentaphyrin (0.1.1.1.0) with strong NIR absorption. Organic and Biomolecular Chemistry, 2020, 18, 5334-5338.	2.8	2
7	A Nuclear Resonance Vibrational Spectroscopic Study of Oxy Myoglobins Reconstituted with Chemically Modified Heme Cofactors: Insights into the Fe–O ₂ Bonding and Internal Dynamics of the Protein. Biochemistry, 2018, 57, 6649-6652.	2.5	7
8	Synergistic Effect of Distal Polar Interactions in Myoglobin and Their Structural Consequences. Inorganic Chemistry, 2018, 57, 14269-14279.	4.0	5
9	Characterization of Catalytic Activities and Heme Coordination Structures of Heme–DNA Complexes Composed of Some Chemically Modified Hemes and an All Parallel-Stranded Tetrameric G-Quadruplex DNA Formed from d(TTAGGG). Biochemistry, 2018, 57, 5930-5937.	2.5	28
10	Characterization of Heme Orientational Disorder in a Myoglobin Reconstituted with a Trifluoromethyl-Group-Substituted Heme Cofactor. Biochemistry, 2017, 56, 4500-4508.	2.5	8
11	Conformational Fixation of a Rectangular Antiaromatic [28]Hexaphyrin Using Rationally Installed Peripheral Straps. Chemistry - A European Journal, 2016, 22, 4413-4417.	3.3	21
12	[62]Tetradecaphyrin and Its Mono―and Bisâ€Zn ^{II} Complexes. Chemistry - A European Journal, 2016, 22, 14518-14522.	3.3	14
13	Characterization of Ground State Electron Configurations of High-Spin Quintet Ferrous Heme Iron in Deoxy Myoglobin Reconstituted with Trifluoromethyl Group-Substituted Heme Cofactors. Inorganic Chemistry, 2016, 55, 12128-12136.	4.0	5
14	Utility of heme analogues to intentionally modify heme–globin interactions in myoglobin. Biochimica Et Biophysica Acta - Bioenergetics, 2016, 1857, 582-588.	1.0	7
15	Effects of Heme Electronic Structure and Distal Polar Interaction on Functional and Vibrational Properties of Myoglobin. Inorganic Chemistry, 2016, 55, 1613-1622.	4.0	8
16	Porphyrinoid Aromaticity Induced by the Interaction between Oxidized and Reduced Pyridine Subunits. European Journal of Organic Chemistry, 2015, 2015, 3824-3829.	2.4	9
17	Characterization of Heme–DNA Complexes Composed of Some Chemically Modified Hemes and Parallel G-Quadruplex DNAs. Biochemistry, 2015, 54, 7168-7177.	2.5	32
18	Usefulness of Myoglobin Containing Cobalt Heme Cofactor in Designing a Myoglobin-Based Artificial Oxygen Carrier. Artificial Organs, 2014, 38, 715-719.	1.9	10

#	Article	IF	CITATIONS
19	Electronic Control of Discrimination between O2 and CO in Myoglobin Lacking the Distal Histidine Residue. Inorganic Chemistry, 2014, 53, 1091-1099.	4.0	13
20	Electronic Control of Ligand-Binding Preference of a Myoglobin Mutant. Inorganic Chemistry, 2014, 53, 9156-9165.	4.0	11
21	Effect of the Electron Density of the Heme Fe Atom on the Fe–Histidine Coordination Bond in Deoxy Myoglobin. Bulletin of the Chemical Society of Japan, 2014, 87, 905-911.	3.2	2
22	Relaxation Analysis of Ligand Binding to the Myoglobin Reconstituted with Cobaltic Heme. Inorganic Chemistry, 2013, 52, 7387-7393.	4.0	6
23	Relationship between the Electron Density of the Heme Fe Atom and the Vibrational Frequencies of the Fe-Bound Carbon Monoxide in Myoglobin. Inorganic Chemistry, 2013, 52, 3349-3355.	4.0	15
24	Dynamic Motion and Rearranged Molecular Shape of Heme in Myoglobin: Structural and Functional Consequences. Molecules, 2013, 18, 3168-3182.	3.8	8
25	Relationship between Oxygen Affinity and Autoxidation of Myoglobin. Inorganic Chemistry, 2012, 51, 11955-11960.	4.0	21
26	Synthesis, Structure, and Aromaticity of the Nickel(II) Complex of Pyricorrole, a Molecular Hybrid of Porphyrin and Corrole. Inorganic Chemistry, 2012, 51, 3891-3895.	4.0	21
27	Inherently Distorted Heme as a Novel Tool for Myoglobinâ€Based Oxygen Carrier. Artificial Organs, 2012, 36, 220-223.	1.9	3
28	Molecular Insight into Intrinsic Heme Distortion in Ligand Binding in Hemoprotein. Biochemistry, 2010, 49, 5642-5650.	2.5	40
29	Novel Controlling Mechanism of the Oxygen Affinity in Myoglobin With Isomeric Porphyrins. Artificial Organs, 2009, 33, 189-193.	1.9	7
30	Analysis on the Water Retaining Capacity of Membrane by Molecular Dynamics Simulations. E-Journal of Surface Science and Nanotechnology, 2009, 7, 591-595.	0.4	1
31	Sandwichâ€Type Heteroleptic <i>opposite</i> ê(Diazaporphyrinato)cerium Complexes: Synthesis, Spectroscopy, Structure, and Electrochemistry. European Journal of Inorganic Chemistry, 2008, 2008, 5519-5523.	2.0	21
32	Functional Evaluation of Iron Oxypyriporphyrin in Protein Heme Pocket. Inorganic Chemistry, 2008, 47, 10771-10778.	4.0	19
33	Development of Software Program Predicting the Binding Site and the Binding Mode of Ligands Against a Target Protein. E-Journal of Surface Science and Nanotechnology, 2008, 6, 241-245.	0.4	2
34	Magnetic and Infrared Properties of the Azide Complex of $(2,7,12,17$ -Tetrapropylporphycenato)iron(III): A Novel Admixing Mechanism of the $S=5/2$ and $S=3/2$ States. European Journal of Inorganic Chemistry, 2007, 2007, 3188-3194.	2.0	27
35	Significance of the Molecular Shape of Iron Corrphycene in a Protein Pocket. Inorganic Chemistry, 2006, 45, 4238-4242.	4.0	14
36	Control of Iron(III) Spin-State in the Model Complexes of Azide Hemoprotein by Porphycene, Corrphycene, and Hemiporphycene Macrocycles. Inorganic Chemistry, 2005, 44, 1193-1195.	4.0	21

Saburo Neya

#	Article	IF	CITATIONS
37	Quantum Chemical Study on Base Excision Mechanism of 8-Oxoguanine DNA Glycosylase: Substrate-Assisted Catalysis of the N-Glycosidic Linkage Cleavage Reaction. Chem-Bio Informatics Journal, 2004, 4, 73-92.	0.3	8
38	Absorption, Magnetic Circular Dichroism, IR Spectra, Electrochemistry, and Molecular Orbital Calculations of Monoaza- and Opposite Diazaporphyrins. European Journal of Inorganic Chemistry, 2004, 2004, 1621-1629.	2.0	38
39	Iron Hemiporphycene as a Functional Prosthetic Group for Myoglobin. Inorganic Chemistry, 2003, 42, 1456-1461.	4.0	38