Lingqing Dong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3450358/publications.pdf Version: 2024-02-01

LINCOING DONG

#	Article	IF	CITATIONS
1	Anisotropic magneto-mechanical stimulation on collagen coatings to accelerate osteogenesis. Colloids and Surfaces B: Biointerfaces, 2022, 210, 112227.	5.0	8
2	Cancer cell migration on straight, wavy, loop and grid microfibre patterns. Biofabrication, 2022, 14, 024102.	7.1	8
3	Simultaneous acceleration of osteogenesis and angiogenesis by surface oxygen vacancies of rutile nanorods. Colloids and Surfaces B: Biointerfaces, 2022, 212, 112348.	5.0	1
4	Improved osseointegration of strontium-modified titanium implants by regulating angiogenesis and macrophage polarization. Biomaterials Science, 2022, 10, 2198-2214.	5.4	18
5	Effects of electrical stimulation on cytokineâ€induced macrophage polarization. Journal of Tissue Engineering and Regenerative Medicine, 2022, 16, 448-459.	2.7	12
6	Accelerated Osteogenesis of Heterogeneous Electric Potential Gradient on CFO/P(VDFâ€TrFE) Membranes. Advanced Materials Interfaces, 2022, 9, .	3.7	8
7	The osteogenic response to chirality-patterned surface potential distribution of CFO/P(VDF-TrFE) membranes. Biomaterials Science, 2022, 10, 4576-4587.	5.4	4
8	Polarization behavior of bone marrow-derived macrophages on charged P(VDF-TrFE) coatings. Biomaterials Science, 2021, 9, 874-881.	5.4	19
9	Accelerated Neurite Outgrowth and Neurogenesis of PC12 Cells on an Fe-doped TiO ₂ Nanorod Film Triggered by Visible Light. ACS Biomaterials Science and Engineering, 2021, 7, 577-585.	5.2	3
10	Enhanced osteogenic differentiation of mesenchymal stem cells on P(<scp>VDFâ€TrFE</scp>) layer coated microelectrodes. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2021, 109, 2227-2236.	3.4	11
11	KLF2+ stemness maintains human mesenchymal stem cells in bone regeneration. Stem Cells, 2020, 38, 395-409.	3.2	15
12	Ultraviolet Radiant Energy-Dependent Functionalization Regulates Cellular Behavior on Titanium Dioxide Nanodots. ACS Applied Materials & Interfaces, 2020, 12, 31793-31803.	8.0	5
13	Enhancing osteogenic differentiation of BMSCs on high magnetoelectric response films. Materials Science and Engineering C, 2020, 113, 110970.	7.3	24
14	Novel Platform for Surface-Mediated Gene Delivery Assisted with Visible-Light Illumination. ACS Applied Materials & Interfaces, 2020, 12, 17290-17301.	8.0	5
15	Controlled Release of Naringin in GelMA-Incorporated Rutile Nanorod Films to Regulate Osteogenic Differentiation of Mesenchymal Stem Cells. ACS Omega, 2019, 4, 19350-19357.	3.5	23
16	Chiral geometry regulates stem cell fate and activity. Biomaterials, 2019, 222, 119456.	11.4	26
17	Enhanced osteogenesis of quasi-three-dimensional hierarchical topography. Journal of Nanobiotechnology, 2019, 17, 102.	9.1	12
18	Surface hydroxyls regulation promotes light-induced cell detachment on TiO2 nanodot films. Surface and Coatings Technology, 2019, 358, 461-466.	4.8	6

LINGQING DONG

#	Article	IF	CITATIONS
19	Insights into the Osteogenic Differentiation of Mesenchymal Stem Cells on Crystalline and Vitreous Silica. ACS Biomaterials Science and Engineering, 2019, 5, 3352-3360.	5.2	4
20	Surface Modification by Divalent Main-Group-Elemental Ions for Improved Bone Remodeling To Instruct Implant Biofabrication. ACS Biomaterials Science and Engineering, 2019, 5, 3311-3324.	5.2	15
21	Comprehensive Evaluation of Surface Potential Characteristics on Mesenchymal Stem Cells' Osteogenic Differentiation. ACS Applied Materials & Interfaces, 2019, 11, 22218-22227.	8.0	24
22	In Situ Controlled Surface Microstructure of 3D Printed Ti Alloy to Promote Its Osteointegration. Materials, 2019, 12, 815.	2.9	14
23	Periodic-Mechanical-Stimulus Enhanced Osteogenic Differentiation of Mesenchymal Stem Cells on Fe ₃ O ₄ /Mineralized Collagen Coatings. ACS Biomaterials Science and Engineering, 2019, 5, 6446-6453.	5.2	14
24	Surface hydroxylation regulates cellular osteogeneses on TiO2 and Ta2O5 nanorod films. Colloids and Surfaces B: Biointerfaces, 2018, 167, 213-219.	5.0	12
25	Harnessing Cell Dynamic Responses on Magnetoelectric Nanocomposite Films to Promote Osteogenic Differentiation. ACS Applied Materials & Interfaces, 2018, 10, 7841-7851.	8.0	62
26	Surface potential-governed cellular osteogenic differentiation on ferroelectric polyvinylidene fluoride trifluoroethylene films. Acta Biomaterialia, 2018, 74, 291-301.	8.3	31
27	Magnetically Assisted Electrodeposition of Aligned Collagen Coatings. ACS Biomaterials Science and Engineering, 2018, 4, 1528-1535.	5.2	16
28	Magnetically actuated mechanical stimuli on Fe3O4/mineralized collagen coatings to enhance osteogenic differentiation of the MC3T3-E1 cells. Acta Biomaterialia, 2018, 71, 49-60.	8.3	56
29	ALK5 transfection of bone marrow mesenchymal stem cells to repair osteoarthritis of knee joint. Bio-Design and Manufacturing, 2018, 1, 135-145.	7.7	1
30	Charge injection based electrical stimulation on polypyrrole planar electrodes to regulate cellular osteogenic differentiation. RSC Advances, 2018, 8, 18470-18479.	3.6	12
31	Enhanced cellular osteogenic differentiation on Zn-containing bioglass incorporated TiO2 nanorod films. Journal of Materials Science: Materials in Medicine, 2018, 29, 136.	3.6	3
32	Enhanced Osteointegration of Hierarchical Structured 3D-Printed Titanium Implants. ACS Applied Bio Materials, 2018, 1, 90-99.	4.6	13
33	Surface Atomic Structure Directs the Fate of Human Mesenchymal Stem Cells. ACS Applied Materials & Interfaces, 2017, 9, 15274-15285.	8.0	20
34	Surface hydroxyl groups regulate the osteogenic differentiation of mesenchymal stem cells on titanium and tantalum metals. Journal of Materials Chemistry B, 2017, 5, 3955-3963.	5.8	38
35	Effect of hierarchical pore structure on ALP expression of MC3T3-E1 cells on bioglass films. Colloids and Surfaces B: Biointerfaces, 2017, 156, 213-220.	5.0	21
36	Controlled Release of Naringin in Metal-Organic Framework-Loaded Mineralized Collagen Coating to Simultaneously Enhance Osseointegration and Antibacterial Activity. ACS Applied Materials & Samp; Interfaces, 2017, 9, 19698-19705.	8.0	97

LINGQING DONG

#	Article	IF	CITATIONS
37	Engineering prevascularized composite cell sheet by light-induced cell sheet technology. RSC Advances, 2017, 7, 32468-32477.	3.6	9
38	Mediation of cellular osteogenic differentiation through daily stimulation time based on polypyrrole planar electrodes. Scientific Reports, 2017, 7, 17926.	3.3	35
39	Cell responses on a H2Ti3O7 nanowire film. RSC Advances, 2017, 7, 33606-33613.	3.6	3
40	Light-Induced Cell Alignment and Harvest for Anisotropic Cell Sheet Technology. ACS Applied Materials & Interfaces, 2017, 9, 36513-36524.	8.0	43
41	Facet-Specific Mineralization Behavior of Nano-CaP on Anatase Polyhedral Microcrystals. ACS Biomaterials Science and Engineering, 2017, 3, 875-881.	5.2	4
42	Enhanced biological performance on nano-microstructured surfaces assembled by SrTiO ₃ cubic nanocrystals. RSC Advances, 2015, 5, 67896-67900.	3.6	3
43	Low-temperature reduction–pyrolysis–catalysis synthesis of carbon nanospheres for lithium-ion batteries. RSC Advances, 2015, 5, 55474-55477.	3.6	5
44	Shape-controlled growth of SrTiO3 polyhedral submicro/nanocrystals. Nano Research, 2014, 7, 1311-1318.	10.4	73
45	Effect of mineralization agents on the surface structure and dielectric properties of SrTiO ₃ nanocrystals. CrystEngComm, 2014, 16, 10750-10753.	2.6	7
46	Facet-Specific Assembly of Proteins on SrTiO3 Polyhedral Nanocrystals. Scientific Reports, 2014, 4, 5084.	3.3	35
47	Hydrothermal growth of rutile TiO2 nanorod films on titanium substrates. Thin Solid Films, 2011, 519, 4634-4640.	1.8	49