## Mian Gu

## List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3449739/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | The rice phosphate transporter OsPHT1;7 plays a dual role in phosphorus redistribution and anther development. Plant Physiology, 2022, 188, 2272-2288.                                                                             | 4.8 | 30        |
| 2  | A crucial role for a nodeâ€localized transporter, HvSPDT, in loading phosphorus into barley grains.<br>New Phytologist, 2022, 234, 1249-1261.                                                                                      | 7.3 | 7         |
| 3  | The rice transcription factor Nhd1 regulates root growth and nitrogen uptake by activating nitrogen transporters. Plant Physiology, 2022, 189, 1608-1624.                                                                          | 4.8 | 21        |
| 4  | OsWRKY21 and OsWRKY108 function redundantly to promote phosphate accumulation through<br>maintaining the constitutive expression of <i>OsPHT1;1</i> under phosphateâ€replete conditions. New<br>Phytologist, 2021, 229, 1598-1614. | 7.3 | 39        |
| 5  | Modulation of plant root traits by nitrogen and phosphate: transporters, long-distance signaling proteins and peptides, and potential artificial traps. Breeding Science, 2021, 71, 62-75.                                         | 1.9 | 5         |
| 6  | OsWRKY108 is an integrative regulator of phosphorus homeostasis and leaf inclination in rice. Plant<br>Signaling and Behavior, 2021, 16, 1976545.                                                                                  | 2.4 | 1         |
| 7  | Two ADPâ€glucose pyrophosphorylase subunits, OsAGPL1 and OsAGPS1, modulate phosphorus homeostasis in rice. Plant Journal, 2020, 104, 1269-1284.                                                                                    | 5.7 | 16        |
| 8  | OsPHT1;3 Mediates Uptake, Translocation, and Remobilization of Phosphate under Extremely Low<br>Phosphate Regimes. Plant Physiology, 2019, 179, 656-670.                                                                           | 4.8 | 105       |
| 9  | A noduleâ€localized phosphate transporter Gm <scp>PT</scp> 7 plays an important role in enhancing symbiotic N <sub>2</sub> fixation and yield in soybean. New Phytologist, 2019, 221, 2013-2025.                                   | 7.3 | 68        |
| 10 | Transport properties and regulatory roles of nitrogen in arbuscular mycorrhizal symbiosis. Seminars<br>in Cell and Developmental Biology, 2018, 74, 80-88.                                                                         | 5.0 | 41        |
| 11 | Maintenance of phosphate homeostasis and root development are coordinately regulated by MYB1, an R2R3-type MYB transcription factor in rice. Journal of Experimental Botany, 2017, 68, 3603-3615.                                  | 4.8 | 71        |
| 12 | Three cis-Regulatory Motifs, AuxRE, MYCRS1 and MYCRS2, are Required for Modulating the Auxin- and<br>Mycorrhiza-Responsive Expression of a Tomato GH3 Gene. Plant and Cell Physiology, 2017, 58, 770-778.                          | 3.1 | 10        |
| 13 | Analysis of tomato plasma membrane H+-ATPase gene family suggests a mycorrhiza-mediated regulatory mechanism conserved in diverse plant species. Mycorrhiza, 2016, 26, 645-656.                                                    | 2.8 | 23        |
| 14 | Complex Regulation of Plant Phosphate Transporters and the Gap between Molecular Mechanisms and Practical Application: What Is Missing?. Molecular Plant, 2016, 9, 396-416.                                                        | 8.3 | 218       |
| 15 | The Characterization of Six Auxin-Induced Tomato GH3 Genes Uncovers a Member, SIGH3.4, Strongly Responsive to Arbuscular Mycorrhizal Symbiosis. Plant and Cell Physiology, 2015, 56, 674-687.                                      | 3.1 | 48        |
| 16 | Phosphate transporter OsPht1;8 in rice plays an important role in phosphorus redistribution from source to sink organs and allocation between embryo and endosperm of seeds. Plant Science, 2015, 230, 23-32.                      | 3.6 | 69        |
| 17 | Identification of microRNAs in six solanaceous plants and their potential link with phosphate and mycorrhizal signaling. Journal of Integrative Plant Biology, 2014, 56, 1164-1178.                                                | 8.5 | 38        |
| 18 | Fine characterization of OsPHO2 knockout mutants reveals its key role in Pi utilization in rice.<br>Journal of Plant Physiology, 2014, 171, 340-348.                                                                               | 3.5 | 37        |

Mian Gu

| #  | Article                                                                                                                                                                                                            | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | A Constitutive Expressed Phosphate Transporter, OsPht1;1, Modulates Phosphate Uptake and<br>Translocation in Phosphate-Replete Rice  Â. Plant Physiology, 2012, 159, 1571-1581.                                    | 4.8 | 241       |
| 20 | The High-Affinity Phosphate Transporter GmPT5 Regulates Phosphate Transport to Nodules and<br>Nodulation in Soybean  Â. Plant Physiology, 2012, 159, 1634-1643.                                                    | 4.8 | 153       |
| 21 | Functional Characterization of 14 Pht1 Family Genes in Yeast and Their Expressions in Response to Nutrient Starvation in Soybean. PLoS ONE, 2012, 7, e47726.                                                       | 2.5 | 78        |
| 22 | The Phosphate Transporter Gene <i>OsPht1;8</i> Is Involved in Phosphate Homeostasis in Rice  Â. Plant<br>Physiology, 2011, 156, 1164-1175.                                                                         | 4.8 | 377       |
| 23 | Identification of two conserved <i>cis</i> â€acting elements, MYCS and P1BS, involved in the regulation of mycorrhizaâ€activated phosphate transporters in eudicot species. New Phytologist, 2011, 189, 1157-1169. | 7.3 | 114       |
| 24 | Adaptation of plasma membrane H+ ATPase and H+ pump to P deficiency in rice roots. Plant and Soil, 2011, 349, 3-11.                                                                                                | 3.7 | 36        |
| 25 | How does phosphate status influence the development of the arbuscular mycorrhizal symbiosis?.<br>Plant Signaling and Behavior, 2011, 6, 1300-1304.                                                                 | 2.4 | 30        |
| 26 | Expression analysis suggests potential roles of microRNAs for phosphate and arbuscular mycorrhizal                                                                                                                 | 5.2 | 127       |

signaling in <i>Śolanum lycopersicum </i>. Physiologia Plantarum, 2010, 138, 226-237.