Marco Milazzo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3449730/publications.pdf

Version: 2024-02-01

Μαρέο Μιματτο

#	Article	IF	CITATIONS
1	The invasive seaweed Asparagopsis taxiformis erodes the habitat structure and biodiversity of native algal forests in the Mediterranean Sea. Marine Environmental Research, 2022, 173, 105515.	1.1	12
2	Multiâ€specific smallâ€scale fisheries rely on few, locally essential, species: Evidence from a multiâ€area study in the Mediterranean. Fish and Fisheries, 2022, 23, 1299-1312.	2.7	7
3	Environmental DNA effectively captures functional diversity of coastal fish communities. Molecular Ecology, 2021, 30, 3127-3139.	2.0	51
4	Volcanic CO2 seep geochemistry and use in understanding ocean acidification. Biogeochemistry, 2021, 152, 93-115.	1.7	31
5	Sandbar shark aggregation in the central Mediterranean Sea and potential effects of tourism. Aquatic Conservation: Marine and Freshwater Ecosystems, 2021, 31, 1420-1428.	0.9	12
6	Greater Mitochondrial Energy Production Provides Resistance to Ocean Acidification in "Winning― Hermatypic Corals. Frontiers in Marine Science, 2021, 7, .	1.2	9
7	Mediterranean rocky reefs in the Anthropocene: Present status and future concerns. Advances in Marine Biology, 2021, 89, 1-51.	0.7	20
8	Mediterranean sharks and rays need action. Science, 2021, 371, 355-356.	6.0	11
9	Decreasing in patch-size of Cystoseira forests reduces the diversity of their associated molluscan assemblage in Mediterranean rocky reefs. Estuarine, Coastal and Shelf Science, 2021, 250, 107163.	0.9	16
10	The invasive Asparagopsis taxiformis hosts a low diverse and less trophic structured molluscan assemblage compared with the native Ericaria brachycarpa. Marine Environmental Research, 2021, 166, 105279.	1.1	7
11	Plastic adjustments of biparental care behavior across embryonic development under elevated temperature in a marine ectotherm. Ecology and Evolution, 2021, 11, 11155-11167.	0.8	3
12	Simplification, not "tropicalizationâ€; of temperate marine ecosystems under ocean warming and acidification. Global Change Biology, 2021, 27, 4771-4784.	4.2	24
13	Major loss of coralline algal diversity in response to ocean acidification. Global Change Biology, 2021, 27, 4785-4798.	4.2	22
14	Nest guarding behaviour of a temperate wrasse differs between sites off Mediterranean CO2 seeps. Science of the Total Environment, 2021, 799, 149376.	3.9	1
15	Are control of extracellular acid-base balance and regulation of skeleton genes linked to resistance to ocean acidification in adult sea urchins?. Science of the Total Environment, 2020, 720, 137443.	3.9	13
16	Changes in fish communities due to benthic habitat shifts under ocean acidification conditions. Science of the Total Environment, 2020, 725, 138501.	3.9	30
17	Social equity and marine protected areas: Perceptions of small-scale fishermen in the Mediterranean Sea. Biological Conservation, 2020, 244, 108531.	1.9	39
18	Improving marine protected area governance through collaboration and co-production. Journal of Environmental Management, 2020, 269, 110757.	3.8	41

Marco Milazzo

#	Article	IF	CITATIONS
19	Invasive Alien Species and Their Effects on Marine Animal Forests. , 2020, , 419-467.		1
20	Ocean acidification and elevated temperature negatively affect recruitment, oxygen consumption and calcification of the reef-building Dendropoma cristatum early life stages: Evidence from a manipulative field study. Science of the Total Environment, 2019, 693, 133476.	3.9	16
21	Ocean acidification at a coastal CO2 vent induces expression of stress-related transcripts and transposable elements in the sea anemone Anemonia viridis. PLoS ONE, 2019, 14, e0210358.	1.1	13
22	Behavioural responses of fish groups exposed to a predatory threat under elevated CO2. Marine Environmental Research, 2019, 147, 179-184.	1.1	11
23	Ocean acidification affects somatic and otolith growth relationship in fish: evidence from an <i>in situ</i> study. Biology Letters, 2019, 15, 20180662.	1.0	17
24	Local support for conservation is associated with perceptions of good governance, social impacts, and ecological effectiveness. Conservation Letters, 2019, 12, e12640.	2.8	149
25	Biogenic habitat shifts under long-term ocean acidification show nonlinear community responses and unbalanced functions of associated invertebrates. Science of the Total Environment, 2019, 667, 41-48.	3.9	20
26	Threatened biogenic formations of the Mediterranean: Current status and assessment of the vermetid reefs along the Lebanese coastline (Levant basin). Ocean and Coastal Management, 2019, 169, 137-146.	2.0	16
27	Living in a high CO ₂ world: a global metaâ€analysis shows multiple traitâ€mediated fish responses to ocean acidification. Ecological Monographs, 2018, 88, 320-335.	2.4	137
28	Settlement performance of the Mediterranean reef-builders Dendropoma cristatum (Biondi 1859) in response to natural bacterial films. Marine Environmental Research, 2018, 137, 149-157.	1.1	7
29	Natural acidification changes the timing and rate of succession, alters community structure, and increases homogeneity in marine biofouling communities. Global Change Biology, 2018, 24, e112-e127.	4.2	37
30	Using natural analogues to investigate the effects of climate change and ocean acidification on Northern ecosystems. ICES Journal of Marine Science, 2018, 75, 2299-2311.	1.2	34
31	Mediterranean Bioconstructions Along the Italian Coast. Advances in Marine Biology, 2018, 79, 61-136.	0.7	142
32	Ocean acidification drives community shifts towards simplified non-calcified habitats in a subtropicalâ~'temperate transition zone. Scientific Reports, 2018, 8, 11354.	1.6	87
33	Abundance patterns at the invasion front: the case of Siganus luridus in Linosa (Strait of Sicily,) Tj ETQq1 1 0.7	'84314.rgB 0.7	T /Overlock 1
34	Ocean acidification does not impair predator recognition but increases juvenile growth in a temperate wrasse off CO2 seeps. Marine Environmental Research, 2017, 132, 33-40.	1.1	21
35	Drawing the Line at Neglected Marine Ecosystems: Ecology of Vermetid Reefs in a Changing Ocean. , 2017, , 345-367.		4
36	Effects of ocean acidification on the shells of four Mediterranean gastropod species near a CO2 seep. Marine Pollution Bulletin, 2017, 124, 917-928.	2.3	47

Marco Milazzo

#	Article	IF	CITATIONS
37	Inorganic carbon physiology underpins macroalgal responses to elevated CO2. Scientific Reports, 2017, 7, 46297.	1.6	119
38	Environmental sensitivity of Neogoniolithon brassica-florida associated with vermetid reefs in the Mediterranean Sea. ICES Journal of Marine Science, 2017, 74, 1074-1082.	1.2	21
39	Ocean acidification can mediate biodiversity shifts by changing biogenic habitat. Nature Climate Change, 2017, 7, 81-85.	8.1	164
40	Food resource partitioning between two sympatric temperate wrasses. Marine and Freshwater Research, 2017, 68, 2324.	0.7	10
41	Individual and population-level responses to ocean acidification. Scientific Reports, 2016, 6, 20194.	1.6	31
42	Recruitment patterns in an intertidal species with low dispersal ability: the reef-building <i>Dendropoma cristatum</i> (Biondi, 1859) (Mollusca: Gastropoda). Italian Journal of Zoology, 2016, 83, 400-407.	0.6	14
43	Five key attributes can increase marine protected areas performance for small-scale fisheries management. Scientific Reports, 2016, 6, 38135.	1.6	162
44	Effects of ocean acidification on embryonic respiration and development of a temperate wrasse living along a natural CO ₂ gradient. , 2016, 4, cov073.		15
45	Ocean acidification affects fish spawning but not paternity at CO ₂ seeps. Proceedings of the Royal Society B: Biological Sciences, 2016, 283, 20161021.	1.2	36
46	Warming-related shifts in the distribution of two competing coastal wrasses. Marine Environmental Research, 2016, 120, 55-67.	1.1	10
47	Temporal fluctuations in seawater pCO2 may be as important as mean differences when determining physiological sensitivity in natural systems. ICES Journal of Marine Science, 2016, 73, 604-612.	1.2	23
48	The impact of ocean acidification and warming on the skeletal mechanical properties of the sea urchin Paracentrotus lividus from laboratory and field observations. ICES Journal of Marine Science, 2016, 73, 727-738.	1.2	46
49	Drawing the Line at Neglected Marine Ecosystems: Ecology of Vermetid Reefs in a Changing Ocean. , 2016, , 1-23.		4
50	Marine Microphytobenthic Assemblage Shift along a Natural Shallow-Water CO2 Gradient Subjected to Multiple Environmental Stressors. Journal of Marine Science and Engineering, 2015, 3, 1425-1447.	1.2	27
51	Predicting future thermal habitat suitability of competing native and invasive fish species: from metabolic scope to oceanographic modelling. , 2015, 3, cou059.		81
52	Calcification is not the Achilles' heel of coldâ€water corals in an acidifying ocean. Global Change Biology, 2015, 21, 2238-2248.	4.2	46
53	Physiological advantages of dwarfing in surviving extinctions in high-CO2 oceans. Nature Climate Change, 2015, 5, 678-682.	8.1	85
54	Seaweed fails to prevent ocean acidification impact on foraminifera along a shallowâ€water <scp>CO</scp> ₂ gradient. Ecology and Evolution, 2015, 5, 1784-1793.	0.8	32

MARCO MILAZZO

#	Article	IF	CITATIONS
55	Macroalgal responses to ocean acidification depend on nutrient and light levels. Frontiers in Marine Science, 2015, 2, .	1.2	77
56	Ocean acidification bends the mermaid's wineglass. Biology Letters, 2015, 11, 20141075.	1.0	15
57	Metagenomics Reveals Planktonic Bacterial Community Shifts across a Natural CO ₂ Gradient in the Mediterranean Sea. Genome Announcements, 2015, 3, .	0.8	6
58	Ocean acidification through the lens of ecological theory. Ecology, 2015, 96, 3-15.	1.5	237
59	Latitudinal- and local-scale variations in a rocky intertidal interaction web. Marine Ecology - Progress Series, 2015, 534, 39-48.	0.9	12
60	Intertidal epilithic bacteria diversity changes along a naturally occurring carbon dioxide and pH gradient. FEMS Microbiology Ecology, 2014, 89, 670-678.	1.3	41
61	Shallow Water Marine Sediment Bacterial Community Shifts Along a Natural CO2 Gradient in the Mediterranean Sea Off Vulcano, Italy. Microbial Ecology, 2014, 67, 819-828.	1.4	59
62	Decline in Coccolithophore Diversity and Impact on Coccolith Morphogenesis Along a Natural CO ₂ Gradient. Biological Bulletin, 2014, 226, 282-290.	0.7	30
63	Ocean acidification impairs vermetid reef recruitment. Scientific Reports, 2014, 4, 4189.	1.6	90
64	Geochemical survey of Levante Bay, Vulcano Island (Italy), a natural laboratory for the study of ocean acidification. Marine Pollution Bulletin, 2013, 73, 485-494.	2.3	106
65	Climate change exacerbates interspecific interactions in sympatric coastal fishes. Journal of Animal Ecology, 2013, 82, 468-477.	1.3	95
66	Distribution of sea urchins living near shallow water CO2 vents is dependent upon species acid–base and ion-regulatory abilities. Marine Pollution Bulletin, 2013, 73, 470-484.	2.3	133
67	Responses of marine benthic microalgae to elevated CO2. Marine Biology, 2013, 160, 1813-1824.	0.7	107
68	Effects of recreational scuba diving on Mediterranean fishes: evidence of involuntary feeding?. Mediterranean Marine Science, 2013, 14, 15.	0.6	7
69	Ocean Acidification and the Loss of Phenolic Substances in Marine Plants. PLoS ONE, 2012, 7, e35107.	1.1	148
70	On the occurrence of the silverstripe blaasop Lagocephalus sceleratus (Gmelin, 1789) along the Libyan coast. BioInvasions Records, 2012, 1, 125-127.	0.4	19
71	Vertical distribution of two sympatric labrid fishes in the Western Mediterranean and Eastern Atlantic rocky subtidal: local shore topography does matter. Marine Ecology, 2011, 32, 521-531.	0.4	13
72	Do small marinas drive habitat specific impacts? A case study from Mediterranean Sea. Marine Pollution Bulletin, 2011, 62, 926-933.	2.3	48

MARCO MILAZZO

#	Article	IF	CITATIONS
73	Evaluation of a behavioural response of Mediterranean coastal fishes to novel recreational feeding situation. Environmental Biology of Fishes, 2011, 91, 127-132.	0.4	12
74	Can recreational scuba divers alter natural gross sedimentation rate? A case study from a Mediterranean deep cave. ICES Journal of Marine Science, 2010, 67, 871-874.	1.2	17
75	Marine reserves: Fish life history and ecological traits matter. Ecological Applications, 2010, 20, 830-839.	1.8	231
76	First record of Percnon gibbesi (H. Milne Edwards, 1853) (Crustacea: Decapoda: Percnidae) from Egyptian waters. Aquatic Invasions, 2010, 5, S123-S125.	0.6	8
77	Developing a scuba trail vulnerability index (STVI): a case study from a Mediterranean MPA. Biodiversity and Conservation, 2009, 18, 1201-1217.	1.2	18
78	Scuba diver behaviour and its effects on the biota of a Mediterranean marine protected area. Environmental Conservation, 2009, 36, 32.	0.7	62
79	Marine reserves: size and age do matter. Ecology Letters, 2008, 11, 481-489.	3.0	516
80	Effectiveness of European Atlanto-Mediterranean MPAs: Do they accomplish the expected effects on populations, communities and ecosystems?. Journal for Nature Conservation, 2008, 16, 193-221.	0.8	143
81	Italian marine reserve effectiveness: Does enforcement matter?. Biological Conservation, 2008, 141, 699-709.	1.9	280
82	Short-term response of the slow growing seagrass Posidonia oceanica to simulated anchor impact. Marine Environmental Research, 2007, 63, 341-349.	1.1	44
83	Diel variability in counts of reef fishes and its implications for monitoring. Journal of Experimental Marine Biology and Ecology, 2006, 331, 108-120.	0.7	60
84	Recreational fish feeding affects coastal fish behavior and increases frequency of predation on damselfish Chromis chromis nests. Marine Ecology - Progress Series, 2006, 310, 165-172.	0.9	56
85	Use of stable isotopes to investigate dispersal of waste from fish farms as a function of hydrodynamics. Marine Ecology - Progress Series, 2006, 313, 261-270.	0.9	65
86	Comparison of the fish assemblages associated with Posidonia oceanica after the partial loss and consequent fragmentation of the meadow. Estuarine, Coastal and Shelf Science, 2005, 65, 645-653.	0.9	25
87	Effects of fish feeding by snorkellers on the density and size distribution of fishes in a Mediterranean marine protected area. Marine Biology, 2005, 146, 1213-1222.	0.7	47
88	Boat anchoring on Posidonia oceanica beds in a marine protected area (Italy, western Mediterranean): effect of anchor types in different anchoring stages. Journal of Experimental Marine Biology and Ecology, 2004, 299, 51-62.	0.7	115
89	Patterns of algal recovery and small-scale effects of canopy removal as a result of human trampling on a Mediterranean rocky shallow community. Biological Conservation, 2004, 117, 191-202.	1.9	62
90	Short-term effect of human trampling on the upper infralittoral macroalgae of Ustica Island MPA (western Mediterranean, Italy). Journal of the Marine Biological Association of the United Kingdom, 2002, 82, 745-748.	0.4	43

MARCO MILAZZO

#	Article	IF	CITATIONS
91	Effect of algal architecture on associated fauna: some evidence from phytal molluscs. Marine Biology, 2002, 140, 981-990.	0.7	181
92	The Impact of Human Recreational Activities in Marine Protected Areas: What Lessons Should Be Learnt in the Mediterranean Sea?. Marine Ecology, 2002, 23, 280-290.	0.4	115
93	Evaluating the ecological effects of Mediterranean marine protected areas: habitat, scale and the natural variability of ecosystems. Environmental Conservation, 2000, 27, 159-178.	0.7	97
94	Trophic cascades in benthic marine ecosystems: lessons for fisheries and protected-area management. Environmental Conservation, 2000, 27, 179-200.	0.7	420
95	Molluscan assemblages associated with photophilic algae in the Marine Reserve of Ustica Island (Lower Tyrrhenian Sea, Italy). Italian Journal of Zoology, 2000, 67, 287-295.	0.6	36