
Claudia M Eckert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3449425/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Assessing Suppliers for Complex Products From the Perspective of Power. IEEE Transactions on Engineering Management, 2022, 69, 1605-1621.	2.4	5
2	Guest Editorial: Innovation in Design Processes. IEEE Transactions on Engineering Management, 2022, 69, 1532-1536.	2.4	2
3	IntRepair: Informed Repairing of Integer Overflows. IEEE Transactions on Software Engineering, 2021, 47, 2225-2241.	4.3	14
4	Editorial: Publishing in Peer-Reviewed Journals. IEEE Transactions on Engineering Management, 2021, 68, 5-10.	2.4	1
5	Facilitating Aligned Co-Decisions for More Sustainable Food Value Chains. Sustainability, 2021, 13, 6551.	1.6	5
6	Factors influencing communication in collaborative design. Journal of Engineering Design, 2021, 32, 671-702.	1.1	12
7	CONCEPT FOR A PERSONA DRIVEN RECOMMENDATION TOOL FOR PROCESS MODELLING APPROACHES. Proceedings of the Design Society, 2021, 1, 711-720.	0.5	0
8	TOWARDS A DEBATE ON THE POSITIONING OF ENGINEERING DESIGN. Proceedings of the Design Society, 2021, 1, 3169-3178.	0.5	1
9	ANALYSIS OF FUNCTIONAL REFERENCE ARCHITECTURE THROUGH AN INDUSTRY LENS. Proceedings of the Design Society, 2021, 1, 467-476.	0.5	1
10	TOWARDS A RESILIENCE ASSURANCE MODEL FOR ROBOTIC AUTONOMOUS SYSTEMS. Proceedings of the Design Society, 2021, 1, 3189-3198.	0.5	2
11	CRITERIA FOR SELECTING DESIGN PROCESS MODELLING APPROACHES. Proceedings of the Design Society, 2021, 1, 791-800.	0.5	10
12	Design Perspectives, Theories, and Processes for Engineering Systems Design. , 2021, , 1-47.		1
13	Process models: plans, predictions, proclamations or prophecies?. Research in Engineering Design - Theory, Applications, and Concurrent Engineering, 2020, 31, 83-102.	1.2	15
14	A review of fuzzy AHP methods for decision-making with subjective judgements. Expert Systems With Applications, 2020, 161, 113738.	4.4	413
15	Supporting designers: moving from method menagerie to method ecosystem. Design Science, 2020, 6, .	1.1	21
16	Design margins in industrial practice. Design Science, 2020, 6, .	1.1	12
17	Designing as playing games of make-believe. Design Science, 2020, 6, .	1.1	3
18	Data Fairy in Engineering Land: The Magic of Data Analysis as a Sociotechnical Process in Engineering Companies. Journal of Mechanical Design, Transactions of the ASME, 2020, 142, .	1.7	3

#	Article	IF	CITATIONS
19	Perspectives on Innovation: The Role of Engineering Design. Proceedings of the Design Society International Conference on Engineering Design, 2019, 1, 1235-1244.	0.6	5
20	Design margins: a hidden issue in industry. Design Science, 2019, 5, .	1.1	38
21	Research into the design and development process: some themes and an overview of the special issue. Research in Engineering Design - Theory, Applications, and Concurrent Engineering, 2019, 30, 157-160.	1.2	8
22	Experimental Investigation of the Implications of Model Granularity for Design Process Simulation. Journal of Mechanical Design, Transactions of the ASME, 2019, 141, .	1.7	9
23	Testing in the incremental design and development of complex products. Research in Engineering Design - Theory, Applications, and Concurrent Engineering, 2019, 30, 291-316.	1.2	23
24	A fuzzy decision tool to evaluate the sustainable performance of suppliers in an agrifood value chain. Computers and Industrial Engineering, 2019, 127, 196-212.	3.4	89
25	\$\$au \$\$ CFI: Type-Assisted Control Flow Integrity for x86-64 Binaries. Lecture Notes in Computer Science, 2018, , 423-444.	1.0	19
26	Models in Engineering Design: Generative and Epistemic Function of Product Models. Design Research Foundations, 2018, , 219-242.	0.2	2
27	Perspectives on iteration in design and development. Research in Engineering Design - Theory, Applications, and Concurrent Engineering, 2017, 28, 153-184.	1.2	111
28	A Method for Improving Overlapping of Testing and Design. IEEE Transactions on Engineering Management, 2017, 64, 179-192.	2.4	23
29	On the integration of product andÂprocess models in engineeringÂdesign. Design Science, 2017, 3, .	1.1	21
30	Call for papers: a special issue of research in engineering design on the topic of design and development processes. Research in Engineering Design - Theory, Applications, and Concurrent Engineering, 2017, 28, 5-6.	1.2	2
31	Thoughts on benchmarking of function modeling: Why and how. Artificial Intelligence for Engineering Design, Analysis and Manufacturing: AIEDAM, 2017, 31, 393-400.	0.7	4
32	Function in engineering: Benchmarking representations and models. Artificial Intelligence for Engineering Design, Analysis and Manufacturing: AIEDAM, 2017, 31, 401-412.	0.7	13
33	Safety Margins and Design Margins: A Differentiation between Interconnected Concepts. Procedia CIRP, 2017, 60, 267-272.	1.0	15
34	Model granularity in engineering design $\hat{a} \in $ concepts and framework. Design Science, 2017, 3, .	1.1	40
35	System architecture design. Artificial Intelligence for Engineering Design, Analysis and Manufacturing: AIEDAM, 2016, 30, 214-216.	0.7	0
36	Al EDAM Special Issue, August 2017, Vol. 31, No. 3. Artificial Intelligence for Engineering Design, Analysis and Manufacturing: AlEDAM, 2016, 30, 329-330.	0.7	0

Claudia M Eckert

#	Article	IF	CITATIONS
37	Architecture decisions in different product classes for complex products. Artificial Intelligence for Engineering Design, Analysis and Manufacturing: AIEDAM, 2016, 30, 217-234.	0.7	2
38	Selecting system architecture: What a single industrial experiment can tell us about the traps to avoid when choosing selection criteria. Artificial Intelligence for Engineering Design, Analysis and Manufacturing: AIEDAM, 2016, 30, 250-262.	0.7	7
39	Communicating Consumer Needs in the Design Process of Branded Products. Journal of Mechanical Design, Transactions of the ASME, 2015, 137, .	1.7	5
40	Comparing Functional Analysis Methods for Product Dissection Tasks. Journal of Mechanical Design, Transactions of the ASME, 2015, 137, .	1.7	19
41	Al EDAM Special Issue, August 2016, Vol. 30, No. 3. Artificial Intelligence for Engineering Design, Analysis and Manufacturing: AlEDAM, 2015, 29, 131-132.	0.7	Ο
42	A Comparative Case Study of Functional Models to Support System Architecture Design. Procedia Computer Science, 2015, 44, 325-335.	1.2	2
43	Design for Values in the FashionFashion and TextileTextile Industry. , 2015, , 691-715.		1
44	Exploratory making: Shape, structure and motion. Design Studies, 2015, 41, 51-78.	1.9	11
45	Supporting communication between product designers and engineering designers in the design process of branded products: a comparison of three approaches. CoDesign, 2014, 10, 135-152.	1.4	8
46	Design Margins as a Key to Understanding Design Iteration. , 2014, , .		6
47	Integrating virtual and physical testing to accelerate the engineering product development process. International Journal of Information Technology and Management, 2014, 13, 154.	0.1	16
48	Design for Values in the Fashion and Textile Industry. , 2014, , 1-20.		1
49	That which is not form: The practical challenges in using functional concepts in design. Artificial Intelligence for Engineering Design, Analysis and Manufacturing: AIEDAM, 2013, 27, 217-231.	0.7	40
50	My functional description is better!. Artificial Intelligence for Engineering Design, Analysis and Manufacturing: AIEDAM, 2013, 27, 187-190.	0.7	29
51	Formality in design communication. Artificial Intelligence for Engineering Design, Analysis and Manufacturing: AIEDAM, 2013, 27, 91-103.	0.7	10
52	Components Margins through the Product Lifecycle. IFIP Advances in Information and Communication Technology, 2013, , 39-47.	0.5	7
53	Al EDAM Special Issue, August 2013, Vol. 27, No. 3. Artificial Intelligence for Engineering Design, Analysis and Manufacturing: AlEDAM, 2012, 26, 103-104.	0.7	0
54	Variations in functional decomposition for an existing product: Experimental results. Artificial Intelligence for Engineering Design, Analysis and Manufacturing: AIEDAM, 2012, 26, 107-128.	0.7	18

#	Article	IF	CITATIONS
55	Sketching across design domains: Roles and formalities. Artificial Intelligence for Engineering Design, Analysis and Manufacturing: AIEDAM, 2012, 26, 245-266.	0.7	20
56	Change as little as possible: creativity in design by modification. Journal of Engineering Design, 2012, 23, 337-360.	1.1	35
57	Engineering change: an overview and perspective on the literature. Research in Engineering Design - Theory, Applications, and Concurrent Engineering, 2011, 22, 103-124.	1.2	317
58	Power-based supplier selection in product development projects. Computers in Industry, 2011, 62, 487-500.	5.7	23
59	Design Med Omtanke: Participation and sustainability in the design of public sector buildings. Design Studies, 2011, 32, 235-254.	1.9	15
60	Different notions of function: results from an experiment on the analysis of an existing product. Journal of Engineering Design, 2011, 22, 811-837.	1.1	40
61	Redesigning the design process through interactive simulation: a case study of life-cycle engineering in jet engine conceptual design. International Journal of Services and Operations Management, 2011, 10, 30.	0.1	16
62	Product Form Evolution. , 2011, , 499-512.		2
63	Reshaping the box: creative designing as constraint management. International Journal of Product Development, 2010, 11, 241.	0.2	37
64	Planning development processes for complex products. Research in Engineering Design - Theory, Applications, and Concurrent Engineering, 2010, 21, 153-171.	1.2	53
65	The elusive act of synthesis. , 2009, , .		5
66	Change Propagation Analysis in Complex Technical Systems. Journal of Mechanical Design, Transactions of the ASME, 2009, 131, .	1.7	183
67	Challenges in identifying the knock-on effects of engineering change. International Journal of Design Engineering, 2009, 2, 414.	0.3	8
68	Exploration of Correlations between Factors Influencing Communication in Complex Product Development. Concurrent Engineering Research and Applications, 2008, 16, 37-59.	2.0	48
69	Determining Component Freeze Order: A Redesign Cost Perspective Using Simulated Annealing. , 2008, ,		3
70	Externalizing tacit overview knowledge: A model-based approach to supporting design teams. Artificial Intelligence for Engineering Design, Analysis and Manufacturing: AIEDAM, 2007, 21, 227-242.	0.7	33
71	Matrices or Node-Link Diagrams: Which Visual Representation is Better for Visualising Connectivity Models?. Information Visualization, 2006, 5, 62-76.	1.2	119
72	Identifying requirements for communication support: A maturity grid-inspired approach. Expert Systems With Applications, 2006, 31, 663-672.	4.4	36

#	Article	IF	CITATIONS
73	Supporting change processes in design: Complexity, prediction and reliability. Reliability Engineering and System Safety, 2006, 91, 1521-1534.	5.1	49
74	Applied Signposting: A Modeling Framework to Support Design Process Improvement. , 2006, , 553.		29
75	Pitfalls of Engineering Change. , 2006, , 413-423.		7
76	CONNECTIVITY MODELS IN DESIGN: REPRESENTATIONS AND TOOLS TO SUPPORT COGNITIVE PREFERENCES BUILDING. , 2006, , 41-60.		2
77	Communication in design. , 2005, , 232-261.		21
78	Engineering change. , 2005, , 262-285.		40
79	Predicting Change Propagation in Complex Design. Journal of Mechanical Design, Transactions of the ASME, 2004, 126, 788-797.	1.7	419
80	NGN, All-IP, B3G: Enabler fi;½r das Future Net?!. Informatik-Spektrum, 2004, 27, 12-34.	1.0	6
81	Change and customisation in complex engineering domains. Research in Engineering Design - Theory, Applications, and Concurrent Engineering, 2004, 15, 1-21.	1.2	454
82	Providing an Overview during the Design of Complex Products. , 2004, , 239-258.		8
83	If Only I Knew What You Were Going to Do. , 2004, , 375-384.		6
84	Against Ambiguity. Computer Supported Cooperative Work, 2003, 12, 153-183.	1.9	70
85	The Role of Objects in Design Co-Operation: Communication through Physical or Virtual Objects. Computer Supported Cooperative Work, 2003, 12, 145-151.	1.9	60
86	Adaptation of Sources of Inspiration in Knitwear Design. Creativity Research Journal, 2003, 15, 355-384.	1.7	35
87	Sources of Inspiration in Industrial Practice. The Case of Knitwear Design. Journal of Design Research, 2003, .	0.1	26
88	Connectivity as a Key to Supporting Design. , 2002, , 479-501.		2
89	The Communication Bottleneck in Knitwear Design: Analysis and Computing Solutions. Computer Supported Cooperative Work, 2001, 10, 29-74.	1.9	38
90	CLASSIFYING DESIGN AND DESIGN MANAGEMENT IN SEASONAL INDUSTRIES. International Journal of Innovation Management, 2001, 05, 401-425.	0.7	3

#	Article	IF	CITATIONS
91	Sources of inspiration: a language of design. Design Studies, 2000, 21, 523-538.	1.9	268
92	Intelligent support for communication in design teams: garment shape specifications in the knitwear industry. Design Studies, 2000, 21, 99-112.	1.9	27
93	A garment design system using constrained Bézier curves. International Journal of Clothing Science and Technology, 2000, 12, 134-143.	0.5	11
94	Managing Effective Communication in Knitwear Design. Design Journal, 1999, 2, 29-42.	0.5	14
95	Interactive generative systems for conceptual design: An empirical perspective. Artificial Intelligence for Engineering Design, Analysis and Manufacturing: AIEDAM, 1999, 13, 303-320.	0.7	31
96	Fortune Favours Only the Prepared Mind: Why Sources of Inspiration are Essential for Continuing Creativity. Creativity and Innovation Management, 1998, 7, 9-16.	1.9	30