Valery Chernov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/344941/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Persistent luminescence dosimetric properties of UV-irradiated SrAl2O4:Eu2+, Dy3+ phosphor. Journal of Luminescence, 2008, 128, 173-184.	1.5	41
2	Thermoluminescence properties of ZnO and ZnO:Yb nanophosphors. Applied Physics Letters, 2006, 89, 183118.	1.5	36
3	Thermoluminescence and infrared stimulated luminescence in long persistent monoclinic SrAl2O4:Eu2+,Dy3+ and SrAl2O4:Eu2+,Nd3+ phosphors. Optical Materials, 2019, 92, 46-52.	1.7	33
4	Gamma radiation effects on commercial Mexican bread making wheat flour. Nuclear Instruments & Methods in Physics Research B, 2006, 245, 455-458.	0.6	27
5	The behavior of thermally and optically stimulated luminescence of long persistent phosphor after blue light illumination. Radiation Measurements, 2008, 43, 241-244.	0.7	25
6	Beta radiation induced thermoluminescence in pure ZrO2 prepared by sol–gel. Journal of Non-Crystalline Solids, 2006, 352, 2543-2547.	1.5	23
7	Study of Interlayer Spacing Collapse During Polymer/Clay Nanocomposite Melt Intercalation. Journal of Nanoscience and Nanotechnology, 2008, 8, 1707-1713.	0.9	21
8	Photoluminescence, afterglow and thermoluminescence in irradiated with blue and UV light. Radiation Measurements, 2007, 42, 668-671.	0.7	20
9	γ radiation thermoluminescence performance of HFCVD diamond films. Nuclear Instruments & Methods in Physics Research B, 2006, 248, 103-108.	0.6	18
10	Thermally and optically stimulated luminescence in long persistent orthorhombic strontium aluminates doped with Eu, Dy and Eu, Nd. Optical Materials, 2017, 67, 91-97.	1.7	17
11	Thermally and optically stimulated luminescence correlated processes in X-ray irradiated KCl:Eu2+. Radiation Measurements, 2001, 33, 797-800.	0.7	16
12	Thermally and optically stimulated luminescence of new ZnO nanophosphors exposed to beta particle irradiation. Radiation Effects and Defects in Solids, 2007, 162, 737-743.	0.4	16
13	Dosimetry properties of Tm-doped single CaF2 crystals. Radiation Measurements, 2001, 33, 571-576.	0.7	14
14	Optical absorption and thermoluminescence in single NaCl:Cu crystals exposed to 60Co and UV light. Radiation Protection Dosimetry, 2006, 119, 102-105.	0.4	14
15	Persistent luminescence, TL and OSL characterization of beta irradiated SrAl2O4:Eu2+, Dy3+ combustion synthesized phosphor. Nuclear Instruments & Methods in Physics Research B, 2014, 326, 99-102.	0.6	14
16	Afterglow, thermoluminescence and optically stimulated luminescence characterization of micro-, nano- and ultrananocrystalline diamond films grown on silicon by HFCVD. Diamond and Related Materials, 2018, 85, 117-124.	1.8	13
17	Thermoluminescence assessment of 0.5, 1.0 and 4.0 µm thick HFCVD undoped diamond films. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 2103-2108.	0.8	12
18	Thermoluminescence characterization of CVD diamond film exposed to UV and beta radiation. Physica Status Solidi A, 2003, 199, 125-130.	1.7	11

#	Article	IF	CITATIONS
19	Thermoluminescence properties of undoped and nitrogen-doped CVD diamond exposed to gamma radiation. Radiation Measurements, 2008, 43, 379-382.	0.7	11
20	Thermoluminescence characterization of a MWCVD diamond film exposed to β-rays and UV radiation. Physica Status Solidi A, 2005, 202, 2206-2211.	1.7	10
21	Effect of thermal treatment on luminescence properties of long persistent CaAl2O4:Eu2+,Dy3+ synthesized by combustion method. Optical Materials, 2020, 101, 109763.	1.7	10
22	The abilities of LiF thermoluminescent detectors for dosimetry at boron neutron capture therapy beams. Radiation Measurements, 1998, 29, 373-377.	0.7	9
23	Optically stimulated luminescence dosimetry on CVD diamond films. Physica Status Solidi A, 2004, 201, 2548-2552.	1.7	9
24	TL, OSL, Raman spectroscopy and SEM characterization of boron doped diamond films. Physica Status Solidi A, 2005, 202, 2154-2159.	1.7	9
25	Linear-supralinear-sublinear beta-ray dose dependences of TL, OSL and afterglow in undoped CVD diamond. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 2125-2130.	0.8	9
26	Photo- and thermally stimulated luminescence of polyminerals extracted from herbs and spices. Radiation Physics and Chemistry, 2012, 81, 1227-1231.	1.4	9
27	Dose rate effects on the thermoluminescence properties of MWCVD diamond films. Radiation Effects and Defects in Solids, 2007, 162, 587-595.	0.4	8
28	Application of a Thermoluminescence Method for Detection of Irradiated Spices. Radiation Protection Dosimetry, 2002, 101, 137-140.	0.4	7
29	TL, OSL, and phototransferred TL in beta-irradiated anion-defective Al2O3. Radiation Measurements, 2004, 38, 685-688.	0.7	7
30	Thermal annealing effects on the TL response of beta-irradiated HPHT Ib type synthetic diamond. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 3041-3046.	0.8	7
31	Afterglow and thermally stimulated luminescence induced by UV radiation in CVD diamond. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 3047-3052.	0.8	7
32	Comparative investigations of TL and OSL in KCI:Eu ²⁺ crystals irradiated with UV and X-rays. Radiation Effects and Defects in Solids, 2001, 154, 319-324.	0.4	6
33	OSL and TL dosimeter characterization of boron doped CVD diamond films. Optical Materials, 2005, 27, 1231-1234.	1.7	6
34	Thermoluminescence kinetics parameters of ZnO exposed to beta particle irradiation. Journal of Materials Science, 2017, 52, 5208-5215.	1.7	6
35	Dosimetric Characteristics of Gamma-Neutron Detectors DTGN-2. Radiation Protection Dosimetry, 1990, 33, 159-162.	0.4	5
36	On the use of MWCVD diamond as thermoluminescent gamma dosimeter. Nuclear Instruments & Methods in Physics Research B, 2007, 260, 592-598.	0.6	5

#	Article	IF	CITATIONS
37	Dose rate effects on the thermoluminescence kinetics properties of MWCVD diamond films. Physica Status Solidi (A) Applications and Materials Science, 2007, 204, 3053-3058.	0.8	5
38	Thermoluminescence and Optically Stimulated Luminescence Properties of <l>l²</l> -Irradiated TiO ₂ :Yb Nanoparticles. Journal of Nanoscience and Nanotechnology, 2009, 9, 1851-1857.	0.9	5
39	Afterglow and thermoluminescence properties in <scp>HPHT</scp> diamond crystals under beta irradiation. Physica Status Solidi (A) Applications and Materials Science, 2013, 210, 2088-2094.	0.8	5
40	Optical properties and functional groups characterization of commercial HPHT micro-diamond samples. Optical Materials, 2022, 131, 112592.	1.7	5
41	Optical and thermoluminescence properties of LiF:Cu, LiF:Mg,Cu and LiF:Mg,Cu,P single crystals. Radiation Measurements, 1998, 29, 365-372.	0.7	4
42	Thermoluminescence Dosimetry of Radon by the Two Peaks Method. Radiation Protection Dosimetry, 1999, 85, 329-332.	0.4	4
43	Thermoluminescence in CVD Diamond Films: Application to Actinometric Dosimetry. Radiation Protection Dosimetry, 2002, 100, 443-446.	0.4	4
44	Dose rate effect on the yield of radiation induced response with thermal fading. Radiation Measurements, 2005, 39, 329-335.	0.7	4
45	Afterglow, TL and IRSL in beta-irradiated HPHT type Ib synthetic diamond. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 3167-3172.	0.8	4
46	All optical read-out radiation dosimeter using CVD synthetic diamond. Physica Status Solidi (A) Applications and Materials Science, 2006, 203, 3173-3178.	0.8	4
47	Dose rate effects on the thermoluminescence properties of HFCVD diamonds. Diamond and Related Materials, 2008, 17, 1283-1287.	1.8	4
48	Dose rate effects on the performance of MWCVD diamond films as TL gamma radiation dosimeter. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 1944-1948.	0.8	4
49	AG, TL, and IRSL dosimetric properties in Xâ€ray irradiated HPHT diamond crystals. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 2359-2362.	0.8	4
50	Improved Method of Study on the Photothermal Effect of Plasmonic Nanoparticles by Dynamic IR Thermography. Plasmonics, 2019, 14, 935-944.	1.8	4
51	Error Analysis of Neutron Dose Measurement in Mixed Gamma-Neutron Fields by a Two Peak TL Method. Radiation Protection Dosimetry, 1993, 49, 443-449.	0.4	3
52	Dose dependences of creation of magnesium centres in LiF: Mg crystals under thermal neutrons. Nuclear Instruments & Methods in Physics Research B, 1995, 95, 505-508.	0.6	3
53	Photoluminescence and thermal stability of 5.5 eV and Ti centres in gamma irradiated LiF:Mg,Ti crystals. Radiation Measurements, 2001, 33, 793-796.	0.7	3
54	Ultraviolet Thermoluminescent Dosimetry using High Temperature Peaks in KCl:Eu2+ Crystals. Radiation Protection Dosimetry, 2002, 100, 425-427.	0.4	3

#	Article	IF	CITATIONS
55	Thermoluminescence Properties of KCl1-XKBrX:Pb2+ Mixed Crystals. Radiation Protection Dosimetry, 2002, 100, 455-457.	0.4	3
56	Performance of CVD diamond as an optically and thermally stimulated luminescence dosemeter. Radiation Protection Dosimetry, 2006, 119, 226-229.	0.4	3
57	Gammaâ€radiation effects on NaCl:Cu crystals. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 1425-1428.	0.8	3
58	Comparative study of TL created in undoped CVD diamond by <i>β</i> rays, UV and visible light. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 2119-2124.	0.8	3
59	Thermoluminescence studies on HPHT diamond crystals exposed to βâ€irradiation. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 2507-2511.	0.8	3
60	3D Dynamic Thermography System for Biomedical Applications. Series in Bioengineering, 2017, , 517-545.	0.3	3
61	Xâ€Ray Thermoluminescence Dosimetry Characterization of Commercially Available CVD Diamond. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800246.	0.8	3
62	Quantification of the radiosensitization effect of high-Z nanoparticles on photon irradiated cells: combining Monte Carlo simulations and an analytical approach to the local effect model. Physics in Medicine and Biology, 2021, 66, .	1.6	3
63	Mechanism of Storage of Ionising Radiation Energy in LiF:Mg, Ti Crystals. Radiation Protection Dosimetry, 1990, 33, 15-18.	0.4	3
64	Modified Track Structure Calculation of Thermoluminescent Yields to Heavy Charged Particles. Radiation Protection Dosimetry, 1990, 33, 51-54.	0.4	2
65	Response Characteristics of LiF:Mg,Cu,P TL Detectors in Boron Neutron Capture Therapy Dosimetry. Radiation Protection Dosimetry, 1999, 85, 373-375.	0.4	2
66	Temperature Variation of the Shape of the F Band in Undoped LiF. Radiation Protection Dosimetry, 2002, 100, 175-178.	0.4	2
67	Study of the Phototransferred Thermoluminescence in KCl:Eu2+ Phosphors. Radiation Protection Dosimetry, 2002, 100, 183-185.	0.4	2
68	Behaviour ofFandFzCentres Under Thermal Stimulation in KCl:Eu2â [~] ŽIrradiated with Ionizing and UV Radiation. Radiation Effects and Defects in Solids, 2003, 158, 269-274.	0.4	2
69	F-center effects in the luminescent properties of KCl1-xBrxwith divalent lead impurity. Physica Status Solidi C: Current Topics in Solid State Physics, 2005, 2, 568-571.	0.8	2
70	Thermoluminescence behaviour of KCL1â^'xBrx:Pb2+ exposed to gamma radiation. Radiation Protection Dosimetry, 2006, 119, 280-284.	0.4	2
71	Multilayer optical disk and method of its management for preventing its illegal use. , 2007, , .		2
72	Correlation between thermally and optically stimulated luminescence in betaâ€irradiated undoped CVD diamond. Physica Status Solidi (A) Applications and Materials Science, 2009, 206, 2098-2102.	0.8	2

#	Article	IF	CITATIONS
73	A novel fitting method for evaluating the thermal quenching parameters of TL with an application to undoped CVD diamond. Physica Status Solidi (A) Applications and Materials Science, 2012, 209, 1779-1785.	0.8	2
74	Optical elements containing semitransparent wavelike films. Applied Optics, 2017, 56, 6146.	0.9	2
75	Raman and Thermoluminescence Studies of HPHT Synthetic Nanodiamond Powders. Physica Status Solidi (A) Applications and Materials Science, 2018, 215, 1800267.	0.8	2
76	Thermoluminescence response of detonation diamond microparticles exposed to beta and alpha radiation. Diamond and Related Materials, 2020, 106, 107823.	1.8	2
77	Effect of position of fermi level on solubility of donor impurities in InAs. Soviet Physics Journal (English Translation of Izvestiia Vysshykh Uchebnykh Zavedenii, Fizika), 1981, 24, 506-510.	0.0	1
78	Stabilization of H centres in irradiated LiF:Mg crystals. Radiation Effects and Defects in Solids, 1995, 134, 493-497.	0.4	1
79	Microdosimetric Approach to Calculation of Dose Dependences of Radiation Induced Effects Under Heavy Charged Particles. Radiation Protection Dosimetry, 1996, 65, 45-48.	0.4	1
80	Simultaneous thermoluminescence and optically stimulated luminescence dating of late Pleistocene sediments from Lake Baikal. Radiation Measurements, 1998, 29, 441-444.	0.7	1
81	Defects generated by irradiation with gamma rays in lead doped KCl–KBr mixed single crystals. Radiation Measurements, 2004, 38, 695-698.	0.7	1
82	Dose dependences of radiation induced yield in mixed radiation fields. Radiation Protection Dosimetry, 2006, 119, 80-84.	0.4	1
83	Heating rate effects on the TL characteristics of hot filament CVD diamond film. Physica Status Solidi (A) Applications and Materials Science, 2010, 207, 2114-2118.	0.8	1
84	See-through reflective optical elements with embedded wavelike films Journal of Radio Electronics, 0, , .	0.0	1
85	Interaction between Cd and Te in InAs. Soviet Physics Journal (English Translation of Izvestiia) Tj ETQq1 1 0.7843	814 rgBT /(0.0	Overlock 10 T
86	Influence of electron-hole and donor-acceptor interactions on the distribution coefficients of impurities in multiply doped semiconductors. Soviet Physics Journal (English Translation of Izvestiia) Tj ETQq0 0	0 r gBī /Ov	verl o ck 10 Tf 5
87	Prospects for a selective thermoluminescence gamma/neutron dosimeter. Soviet Atomic Energy, 1989, 67, 912-916.	0.1	0
88	UNIC-02 universal complex for thermoluminescent measurement. Nuclear Tracks and Radiation Measurements (1993), 1993, 21, 81-83.	0.1	0
89	Thermal desensitization of gamma irradiated LiF:Mg,Ti. Nuclear Tracks and Radiation Measurements (1993), 1993, 21, 159-161.	0.1	0
90	Some Features of IRSL in Microcline from the Baikal Region. Radiation Protection Dosimetry, 1999, 84, 461-465.	0.4	0

#	Article	IF	CITATIONS
91	Photo-, Thermo- and Optically Stimulated Emission Spectra in KCl:Eu2+. Physica Status Solidi A, 2001, 187, 535-542.	1.7	0
92	PHOTOTRANSFERRED THERMOLUMINESCENCE OF KCL:Eu2+ DOSEMETERS. , 2001, , .		0
93	Optical absorption, TL and IRSL of basic plagioclase megacrysts from the pinacate (Sonora, Mexico) quaternary alkalic volcanics. Radiation Protection Dosimetry, 2006, 119, 233-237.	0.4	0
94	CVD Diamond Applications as TL Radiation Dosimeters. Materials Research Society Symposia Proceedings, 2007, 1039, 1.	0.1	0
95	Effect of using type A radiation for dose reconstruction in type B irradiated material: A microdosimetry approach. Radiation Measurements, 2008, 43, 805-808.	0.7	0
96	Dosimetric Assessment of Mono-Crystalline CVD Diamonds Exposed to Beta and Ultraviolet Radiation. Materials Research Society Symposia Proceedings, 2009, 1203, 1.	0.1	0
97	Analytical approximation of the nanoscale dose distribution in an irradiated medium with an embedded nanoparticle. Journal of Physics: Conference Series, 2012, 393, 012035.	0.3	0