Eugenio D Hottz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3449315/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Platelet activation and platelet-monocyte aggregate formation trigger tissue factor expression in patients with severe COVID-19. Blood, 2020, 136, 1330-1341.	1.4	576
2	Platelets mediate increased endothelium permeability in dengue through NLRP3-inflammasome activation. Blood, 2013, 122, 3405-3414.	1.4	276
3	SARS-CoV-2 engages inflammasome and pyroptosis in human primary monocytes. Cell Death Discovery, 2021, 7, 43.	4.7	194
4	Lipid droplets fuel SARS-CoV-2 replication and production of inflammatory mediators. PLoS Pathogens, 2020, 16, e1009127.	4.7	193
5	Dengue induces platelet activation, mitochondrial dysfunction and cell death through mechanisms that involve DC-SIGN and caspases. Journal of Thrombosis and Haemostasis, 2013, 11, 951-962.	3.8	165
6	Platelets in Immune Response to Virus and Immunopathology of Viral Infections. Frontiers in Medicine, 2018, 5, 121.	2.6	151
7	Human megakaryocytes possess intrinsic antiviral immunity through regulated induction of IFITM3. Blood, 2019, 133, 2013-2026.	1.4	127
8	Platelet Activation and Apoptosis Modulate Monocyte Inflammatory Responses in Dengue. Journal of Immunology, 2014, 193, 1864-1872.	0.8	125
9	Innate immune receptors in platelets and platelet-leukocyte interactions. Journal of Leukocyte Biology, 2020, 108, 1157-1182.	3.3	95
10	Platelet proteome reveals novel pathways of platelet activation and platelet-mediated immunoregulation in dengue. PLoS Pathogens, 2017, 13, e1006385.	4.7	76
11	Leptin Induces Proadipogenic and Proinflammatory Signaling in Adipocytes. Frontiers in Endocrinology, 2019, 10, 841.	3.5	71
12	Breast-cancer extracellular vesicles induce platelet activation and aggregation by tissue factor-independent and -dependent mechanisms. Thrombosis Research, 2017, 159, 24-32.	1.7	65
13	Persistent platelet activation and apoptosis in virologically suppressed HIV-infected individuals. Scientific Reports, 2018, 8, 14999.	3.3	50
14	Platelets in dengue infection. Drug Discovery Today Disease Mechanisms, 2011, 8, e33-e38.	0.8	45
15	Inflammasome in Platelets: Allying Coagulation and Inflammation in Infectious and Sterile Diseases?. Mediators of Inflammation, 2015, 2015, 1-7.	3.0	42
16	Cyclosporin A inhibits colon cancer cell growth independently of the calcineurin pathway. Cell Cycle, 2012, 11, 3997-4008.	2.6	34
17	Emerging Concepts in Dengue Pathogenesis: Interplay between Plasmablasts, Platelets, and Complement in Triggering Vasculopathy. Critical Reviews in Immunology, 2014, 34, 227-240.	0.5	33
18	Platelet-monocyte interaction amplifies thromboinflammation through tissue factor signaling in COVID-19. Blood Advances, 2022, 6, 5085-5099.	5.2	32

EUGENIO D HOTTZ

#	Article	IF	CITATIONS
19	Inflammatory signaling in dengue-infected platelets requires translation and secretion of nonstructural protein 1. Blood Advances, 2020, 4, 2018-2031.	5.2	31
20	Simvastatin Downregulates the SARS-CoV-2-Induced Inflammatory Response and Impairs Viral Infection Through Disruption of Lipid Rafts. Frontiers in Immunology, 2022, 13, 820131.	4.8	29
21	The Weight of Obesity in Immunity from Influenza to COVID-19. Frontiers in Cellular and Infection Microbiology, 2021, 11, 638852.	3.9	24
22	Fundamentals in Covid-19-Associated Thrombosis: Molecular and Cellular Aspects. Frontiers in Cardiovascular Medicine, 2021, 8, 785738.	2.4	20
23	Human endogenous retrovirus K in the respiratory tract is associated with COVID-19 physiopathology. Microbiome, 2022, 10, 65.	11.1	20
24	Platelet–leukocyte interactions in the pathogenesis of viral infections. Platelets, 2022, 33, 200-207.	2.3	18
25	Dengue virus-activated platelets modulate monocyte immunometabolic response through lipid droplet biogenesis and cytokine signaling. Journal of Leukocyte Biology, 2020, 108, 1293-1306.	3.3	17
26	Heparanase expression and activity are increased in platelets during clinical sepsis. Journal of Thrombosis and Haemostasis, 2021, 19, 1319-1330.	3.8	15
27	VIP plasma levels associate with survival in severe COVID-19 patients, correlating with protective effects in SARS-CoV-2-infected cells. Journal of Leukocyte Biology, 2022, 111, 1107-1121.	3.3	15
28	Platelet proteome reveals features of cell death, antiviral response and viral replication in covid-19. Cell Death Discovery, 2022, 8, .	4.7	15
29	Plateletâ€leukocyte interactions in COVIDâ€19: Contributions to hypercoagulability, inflammation, and disease severity. Research and Practice in Thrombosis and Haemostasis, 2022, 6, e12709.	2.3	13
30	Characterization of clinical and immunological features in patients coinfected with dengue virus and HIV. Clinical Immunology, 2016, 164, 95-105.	3.2	12
31	Platelet function in HIV plus dengue coinfection associates with reduced inflammation and milder dengue illness. Scientific Reports, 2019, 9, 7096.	3.3	10
32	Platelets in dengue infection: more than a numbers game. Platelets, 2022, 33, 176-183.	2.3	9
33	Peripheral leptin signaling persists in innate immune cells during diet-induced obesity. Journal of Leukocyte Biology, 2021, 109, 1131-1138.	3.3	6
34	Lipopolysaccharide triggers different transcriptional signatures in taurine and indicine cattle macrophages: Reactive oxygen species and potential outcomes to the development of immune response to infections. PLoS ONE, 2020, 15, e0241861.	2.5	5
35	Apoptosis characterization in mononuclear blood leukocytes of HIVÂpatients during dengue acute disease. Scientific Reports, 2020, 10, 6351.	3.3	2
36	Isolation of Microvesicles from Plasma Samples Avoiding Lipoprotein. Methods in Molecular Biology, 2022, 2409, 245-255.	0.9	2

Eugenio D Hottz

#	Article	IF	CITATIONS
37	Lipid Droplets Contribute to Sepsis-Associated Organ Dysfunction by Disrupting Tissue Tolerance Through the Amplification of Inflammation and Lipid Peroxidation. SSRN Electronic Journal, 0, , .	0.4	1
38	Editorial: Host Innate Immune Response and Its Impact on Pulmonary Pathogenesis During Influenza Virus Infection. Frontiers in Cellular and Infection Microbiology, 2021, 11, 779411.	3.9	0
39	Title is missing!. , 2020, 15, e0241861.		0
40	Title is missing!. , 2020, 15, e0241861.		0
41	Title is missing!. , 2020, 15, e0241861.		0
42	Title is missing!. , 2020, 15, e0241861.		0
43	Lipid droplets fuel SARS-CoV-2 replication and production of inflammatory mediators. , 2020, 16, e1009127.		0
44	Lipid droplets fuel SARS-CoV-2 replication and production of inflammatory mediators. , 2020, 16, e1009127.		0
45	Lipid droplets fuel SARS-CoV-2 replication and production of inflammatory mediators. , 2020, 16, e1009127.		0