Rod A Herman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3449285/publications.pdf

Version: 2024-02-01

88 2,020 25 41 g-index

89 89 89 89 1457

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	Recommendations for the design of laboratory studies on non-target arthropods for risk assessment of genetically engineered plants. Transgenic Research, 2011, 20, 1-22.	2.4	206
2	Unintended Compositional Changes in Genetically Modified (GM) Crops: 20 Years of Research. Journal of Agricultural and Food Chemistry, 2013, 61, 11695-11701.	5.2	135
3	Application of food and feed safety assessment principles to evaluate transgenic approaches to gene modulation in crops. Food and Chemical Toxicology, 2010, 48, 1773-1790.	3.6	89
4	The Value of Short Amino Acid Sequence Matches for Prediction of Protein Allergenicity. Toxicological Sciences, 2006, 90, 252-258.	3.1	81
5	Bioinformatics and the allergy assessment of agricultural biotechnology products: Industry practices and recommendations. Regulatory Toxicology and Pharmacology, 2011, 60, 46-53.	2.7	71
6	Stability of a set of allergens and non-allergens in simulated gastric fluid. International Journal of Food Sciences and Nutrition, 2007, 58, 125-141.	2.8	57
7	Compositional assessment of transgenic crops: an idea whose time has passed. Trends in Biotechnology, 2009, 27, 555-557.	9.3	55
8	Rapid Degradation of the Cry1F Insecticidal Crystal Protein in Soil. Journal of Agricultural and Food Chemistry, 2002, 50, 7076-7078.	5.2	54
9	Binary Insecticidal Crystal Protein from <l>Bacillus thuringiensis,</l> Strain PS149B1: Effects of Individual Protein Components and Mixtures in Laboratory Bioassays. Journal of Economic Entomology, 2002, 95, 635-639.	1.8	51
10	Acute and repeated dose (28 day) mouse oral toxicology studies with Cry34Ab1 and Cry35Ab1 Bt proteins used in coleopteran resistant DAS-59122-7 corn. Regulatory Toxicology and Pharmacology, 2009, 54, 154-163.	2.7	49
11	Rapid Digestion of Cry34Ab1 and Cry35Ab1 in Simulated Gastric Fluid. Journal of Agricultural and Food Chemistry, 2003, 51, 6823-6827.	5.2	43
12	Compositional assessment of event DAS-59122-7 maize using substantial equivalence. Regulatory Toxicology and Pharmacology, 2007, 47, 37-47.	2.7	43
13	Compositional Equivalency of Cry1F Corn Event TC6275 and Conventional Corn (Zea maysL.). Journal of Agricultural and Food Chemistry, 2004, 52, 2726-2734.	5.2	42
14	Acid-induced unfolding kinetics in simulated gastric digestion of proteins. Regulatory Toxicology and Pharmacology, 2006, 46, 93-99.	2.7	41
15	Value of eight-amino-acid matches in predicting the allergenicity status of proteins: an empirical bioinformatic investigation. Clinical and Molecular Allergy, 2009, 7, 9.	1.8	41
16	Assessing the ecological risks from the persistence and spread of feral populations of insect-resistant transgenic maize. Transgenic Research, 2012, 21, 655-664.	2.4	37
17	Should digestion assays be used to estimate persistence of potential allergens in tests for safety of novel food proteins?. Clinical and Molecular Allergy, 2009, 7, 1.	1.8	35
18	Protease resistance of food proteins: a mixed picture for predicting allergenicity but a useful tool for assessing exposure. Clinical and Translational Allergy, 2018, 8, 30.	3.2	35

#	Article	IF	Citations
19	Digestion Assays in Allergenicity Assessment of Transgenic Proteins. Environmental Health Perspectives, 2006, 114, 1154-1157.	6.0	34
20	Evaluation of logistic and polynomial models for fitting sandwich-ELISA calibration curves. Journal of Immunological Methods, 2008, 339, 245-258.	1.4	34
21	Transgenic maize event TC1507: Global status of food, feed, and environmental safety. GM Crops and Food, 2015, 6, 80-102.	3.8	34
22	Measurement of endogenous allergens in genetically modified soybeans – Short communication. Regulatory Toxicology and Pharmacology, 2014, 70, 75-79.	2.7	33
23	Compositional Equivalence of DAS-444 $ ilde{A}$ 6-6 (AAD-12 + 2mEPSPS + PAT) Herbicide-Tolerant Soybean and Nontransgenic Soybean. Journal of Agricultural and Food Chemistry, 2013, 61, 11180-11190.	5.2	31
24	Characterization of Cry34Ab1 and Cry35Ab1 Insecticidal Crystal Proteins Expressed in Transgenic Corn Plants and Pseudomonas fluorescens. Journal of Agricultural and Food Chemistry, 2004, 52, 8057-8065.	5.2	27
25	Quantitative measurement of protein digestion in simulated gastric fluid. Regulatory Toxicology and Pharmacology, 2005, 41, 175-184.	2.7	25
26	Rapid Degradation of Cry1F Delta-Endotoxin in Soil. Environmental Entomology, 2001, 30, 642-644.	1.4	24
27	Purification and Characterization of a Chimeric Cry1F Î-Endotoxin Expressed in Transgenic Cotton Plants. Journal of Agricultural and Food Chemistry, 2006, 54, 829-835.	5.2	24
28	Stacking transgenic event DASâ€Ã~15Ã~7â€1 alters maize composition less than traditional breeding. Plant Biotechnology Journal, 2017, 15, 1264-1272.	8.3	23
29	Heat stability, its measurement, and its lack of utility in the assessment of the potential allergenicity of novel proteins. Regulatory Toxicology and Pharmacology, 2011, 61, 292-295.	2.7	22
30	Biomimetic Extraction ofBacillus thuringiensisInsecticidal Crystal Proteins from Soil Based on Invertebrate Gut Fluid Chemistry. Journal of Agricultural and Food Chemistry, 2005, 53, 6630-6634.	5.2	21
31	Rapid Degradation of a Binary, Ps149B1, &dgr-Endotoxin ofBacillus thuringiensisin Soil, and a Novel Mathematical Model for Fitting Curve-Linear Decay. Environmental Entomology, 2002, 31, 208-214.	1.4	19
32	Endogenous allergen upregulation: Transgenic vs. traditionally bred crops. Food and Chemical Toxicology, 2011, 49, 2667-2669.	3.6	19
33	Acute and 28-day repeated dose toxicology studies in mice with aryloxyalkanoate dioxygenase (AAD-1) protein expressed in 2,4-D tolerant DAS-40278-9 maize. Regulatory Toxicology and Pharmacology, 2012, 62, 363-370.	2.7	19
34	Allergenic sensitization versus elicitation risk criteria for novel food proteins. Regulatory Toxicology and Pharmacology, 2018, 94, 283-285.	2.7	19
35	Will Following the Regulatory Script for GMOs Promote Public Acceptance of Gene-Edited Crops?. Trends in Biotechnology, 2019, 37, 1272-1273.	9.3	18
36	Risk-Only Assessment of Genetically Engineered Crops Is Risky. Trends in Plant Science, 2019, 24, 58-68.	8.8	18

3

#	Article	IF	CITATIONS
37	Evaluation of global sequence comparison and one-to-one FASTA local alignment in regulatory allergenicity assessment of transgenic proteins in food crops. Food and Chemical Toxicology, 2014, 71, 142-148.	3.6	17
38	Insect-Protected Event DAS-81419-2 Soybean (<i>Glycine max</i> L.) Grown in the United States and Brazil Is Compositionally Equivalent to Nontransgenic Soybean. Journal of Agricultural and Food Chemistry, 2015, 63, 2063-2073.	5.2	17
39	Development, Validation, and Interlaboratory Evaluation of a Quantitative Multiplexing Method To Assess Levels of Ten Endogenous Allergens in Soybean Seed and Its Application to Field Trials Spanning Three Growing Seasons. Journal of Agricultural and Food Chemistry, 2017, 65, 5531-5544.	5.2	16
40	Variation in Seed Allergen Content From Three Varieties of Soybean Cultivated in Nine Different Locations in Iowa, Illinois, and Indiana. Frontiers in Plant Science, 2018, 9, 1025.	3.6	16
41	Safe composition levels of transgenic crops assessed via a clinical medicine model. Biotechnology Journal, 2010, 5, 172-182.	3.5	14
42	Compositional safety of event DAS-40278-9 (AAD-1) herbicide-tolerant maize. GM Crops, 2010, 1, 294-311.	1.9	13
43	Safety considerations derived from Cry34Ab1/Cry35Ab1 structure and function. Journal of Invertebrate Pathology, 2017, 142, 27-33.	3.2	13
44	Compositional Safety of DAS-68416-4 (AAD-12) Herbicide-Tolerant Soybean. Journal of Nutrition & Food Sciences, 2011, 01, .	1.0	13
45	Performance of broiler chickens fed diets containing DAS-68416-4 soybean meal. GM Crops, 2011, 2, 169-175.	1.9	12
46	Do whole-food animal feeding studies have any value in the safety assessment of GM crops?. Regulatory Toxicology and Pharmacology, 2014, 68, 171-174.	2.7	12
47	1:1 FASTA update: Using the power of E -values in FASTA to detect potential allergen cross-reactivity. Toxicology Reports, 2015, 2, 1145-1148.	3.3	12
48	Comparison of Linear and Nonlinear Regression for Modeling the First-Order Degradation of Pest-Control Substances in Soil. Journal of Agricultural and Food Chemistry, 2003, 51, 4722-4726.	5.2	11
49	Compositional Safety of Herbicide-Tolerant DAS-81910-7 Cotton. Journal of Agricultural and Food Chemistry, 2013, 61, 11683-11692.	5.2	11
50	Expert opinion vs. empirical evidence. GM Crops and Food, 2014, 5, 8-10.	3.8	11
51	Assessment of potential adjuvanticity of Cry proteins. Regulatory Toxicology and Pharmacology, 2016, 79, 149-155.	2.7	10
52	Rapid simulated gastric fluid digestion of in-seed/grain proteins expressed in genetically engineered crops. Regulatory Toxicology and Pharmacology, 2016, 81, 106-112.	2.7	10
53	Single-Event Transgene Product Levels Predict Levels in Genetically Modified Breeding Stacks. Journal of Agricultural and Food Chemistry, 2017, 65, 7885-7892.	5.2	10
54	Allergenic potential of novel proteins – What can we learn from animal production?. Regulatory Toxicology and Pharmacology, 2017, 89, 240-243.	2.7	10

#	Article	IF	CITATIONS
55	Validation of bioinformatic approaches for predicting allergen cross reactivity. Food and Chemical Toxicology, 2019, 132, 110656.	3.6	10
56	Evidence runs contrary to digestive stability predicting protein allergenicity. Transgenic Research, 2020, 29, 105-107.	2.4	10
57	Bringing policy relevance and scientific discipline to environmental risk assessment for genetically modified crops. Trends in Biotechnology, 2013, 31, 493-496.	9.3	9
58	Transgenesis affects endogenous soybean allergen levels less than traditional breeding. Regulatory Toxicology and Pharmacology, 2017, 89, 70-73.	2.7	9
59	Performance of broiler chickens fed event DAS-40278-9 maize containing the aryloxyalkanoate dioxygenase-1 protein. Regulatory Toxicology and Pharmacology, 2011, 60, 296-299.	2.7	8
60	Preliminary safety assessment of a membrane-bound delta 9 desaturase candidate protein for transgenic oilseed crops. Food and Chemical Toxicology, 2012, 50, 3776-3784.	3.6	8
61	Food and feed safety of DAS-444 \tilde{A} -6-6 herbicide-tolerant soybean. Regulatory Toxicology and Pharmacology, 2018, 94, 70-74.	2.7	8
62	EFSA Genetically Engineered Crop Composition Equivalence Approach: Performance and Consistency. Journal of Agricultural and Food Chemistry, 2019, 67, 4080-4088.	5.2	8
63	Transparency in risk-disproportionate regulation of modern crop-breeding techniques. GM Crops and Food, 2021, 12, 376-381.	3.8	8
64	Agronomic performance of insect-protected and herbicide-tolerant MON 89034 × TC1507 × NK603 × DAS-40278–9 corn is equivalent to that of conventional corn. GM Crops and Food, 2017, 8, 149-155.	3.8	7
65	Untargeted Metabolomics Are Not Useful in the Risk Assessment of GM Crops. Trends in Plant Science, 2019, 24, 383-384.	8.8	7
66	DP- $2\tilde{A}^{-}$ 2216-6 maize does not adversely affect rats in a 90-day feeding study. Regulatory Toxicology and Pharmacology, 2020, 117, 104779.	2.7	7
67	Enlightened oversight of genetically engineered crops for the next generation. Agricultural and Environmental Letters, 2020, 5, e20004.	1.2	7
68	Safety risks of cryptic reading frames and gene disruption due to crop transgenesis: What are the odds?. GM Crops, 2011, 2, 4-6.	1.9	6
69	Invoking ideology in the promotion of ecological risk assessment for GM crops. Trends in Biotechnology, 2013, 31, 217-218.	9.3	6
70	Obligatory metabolomic profiling of geneâ€edited crops is risk disproportionate. Plant Journal, 2020, 103, 1985-1988.	5.7	6
71	Evidence-based regulations for bioinformatic prediction of allergen cross-reactivity are needed. Regulatory Toxicology and Pharmacology, 2021, 120, 104841.	2.7	6
72	Fit of Four Curveâ^'Linear Models to Decay Profiles for Pest Control Substances in Soil. Journal of Agricultural and Food Chemistry, 2006, 54, 4343-4349.	5.2	5

#	Article	IF	Citations
73	Safety evaluation of DAS-44406-6 soybeans in Wistar rats. Regulatory Toxicology and Pharmacology, 2018, 92, 152-164.	2.7	5
74	Q-X1-P-X2 motif search for potential celiac disease risk has poor selectivity. Regulatory Toxicology and Pharmacology, 2018, 99, 233-237.	2.7	5
75	Devitalization of transgenic seed that preserves DNA and protein integrity. Journal of Biomolecular Techniques, 2008, 19, 348-52.	1.5	5
76	Inter-laboratory optimization of protein extraction, separation, and fluorescent detection of endogenous rice allergens. Bioscience, Biotechnology and Biochemistry, 2016, 80, 2198-2207.	1.3	4
77	Allergen false-detection using official bioinformatic algorithms. GM Crops and Food, 2020, 11, 93-96.	3.8	4
78	No treatment-related effects with aryloxyalkanoate dioxygenase-12 in three 28-day mouse toxicity studies. Regulatory Toxicology and Pharmacology, 2018, 92, 220-225.	2.7	3
79	Hypothesis-based food, feed, and environmental safety assessment of GM crops: A case study using maize event DP-202216-6. GM Crops and Food, 2021, 12, 282-291.	3.8	3
80	History of safe exposure and bioinformatic assessment of phosphomannose-isomerase (PMI) for allergenic risk. Transgenic Research, 2021, 30, 201-206.	2.4	3
81	Mass spectrometric analysis of digesta does not improve the allergenicity assessment of GM crops. Transgenic Research, 2021, 30, 283-288.	2.4	3
82	Quantification of Insect-Induced Foliage Damage Using a High-Capacity Laboratory Bioassay. Journal of Economic Entomology, 1989, 82, 1836-1842.	1.8	2
83	Isoline use in crop composition studies with genetically modified crops under EFSA guidance – Short communication. Regulatory Toxicology and Pharmacology, 2018, 95, 204-206.	2.7	2
84	Erroneous Belief that Digestive Stability Predicts Allergenicity May Lead to Greater Risk for Novel Food Proteins. Frontiers in Bioengineering and Biotechnology, 2021, 9, 747490.	4.1	2
85	Slow alignment of GMO allergenicity regulations with science on protein digestibility. GM Crops and Food, 2022, 13, 126-130.	3.8	2
86	Trypsin cleavage sites are highly unlikely to occur in celiac-causing restricted epitopes. GM Crops and Food, 2020, 11, 67-69.	3.8	1
87	Transgene expression in sprayed and non-sprayed herbicide-tolerant genetically engineered crops is equivalent. Regulatory Toxicology and Pharmacology, 2020, 111, 104572.	2.7	1
88	Comprehensive COMPARE database reduces allergenic risk of novel food proteins. GM Crops and Food, 2022, 13, 112-118.	3.8	1