Young Kee Kang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3449182/publications.pdf Version: 2024-02-01

		185998	223531
110	2,544	28	46
papers	citations	h-index	g-index
112	112	112	2378
all docs	docs citations	times ranked	citing authors
112 all docs	112 docs citations	112 times ranked	2378 citing authors

#	Article	IF	CITATIONS
1	Physics-based protein-structure prediction using a hierarchical protocol based on the UNRES force field: Assessment in two blind tests. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 7547-7552.	3.3	140
2	Free energies of hydration of solute molecules. 1. Improvement of the hydration shell model by exact computations of overlapping volumes. The Journal of Physical Chemistry, 1987, 91, 4105-4109.	2.9	131
3	Additivity of atomic static polarizabilities and dispersion coefficients. Theoretica Chimica Acta, 1982, 61, 41-48.	0.9	117
4	Ab initio MO and density functional studies on trans and cis conformers of N-methylacetamide. Computational and Theoretical Chemistry, 2001, 546, 183-193.	1.5	99
5	Free energies of hydration of solute molecules. 4. Revised treatment of the hydration shell model. The Journal of Physical Chemistry, 1988, 92, 4739-4742.	2.9	98
6	Positional preference of proline in αâ€helices. Protein Science, 1999, 8, 1492-1499.	3.1	94
7	Free energies of hydration of solute molecules. 3. Application of the hydration shell model to charged organic molecules. The Journal of Physical Chemistry, 1987, 91, 4118-4120.	2.9	77
8	Conformational Preferences of Non-Prolyl and Prolyl Residues. Journal of Physical Chemistry B, 2006, 110, 21338-21348.	1.2	74
9	Internal rotation about the C–N bond of amides. Computational and Theoretical Chemistry, 2004, 676, 171-176.	1.5	72
10	Cis–trans isomerization and puckering of proline residue. Biophysical Chemistry, 2004, 111, 135-142.	1.5	68
11	Free energies of hydration of solute molecules. 2. Application of the hydration shell model to nonionic organic molecules. The Journal of Physical Chemistry, 1987, 91, 4109-4117.	2.9	65
12	Imide Cisâ^'Trans Isomerization ofN-Acetyl-Nâ€ [~] -methylprolineamide and Solvent Effects. Journal of Physical Chemistry A, 1999, 103, 5436-5439.	1.1	57
13	Pseudorotation in heterocyclic five-membered rings: tetrahydrofuran and pyrrolidine. Computational and Theoretical Chemistry, 1996, 369, 157-165.	1.5	52
14	Conformational Preferences of Proline Oligopeptides. Journal of Physical Chemistry B, 2006, 110, 17645-17655.	1.2	48
15	Assessment of density functionals with longâ€range and/or empirical dispersion corrections for conformational energy calculations of peptides. Journal of Computational Chemistry, 2010, 31, 2915-2923.	1.5	46
16	Cisâ^'Trans Isomerization and Puckering of Pseudoproline Dipeptides. Journal of Physical Chemistry B, 2002, 106, 2074-2082.	1.2	44
17	Which Functional Form Is Appropriate for Hydrogen Bond of Amides?. Journal of Physical Chemistry B, 2000, 104, 8321-8326.	1.2	43
18	Ab Initio Molecular Orbital Calculations on Low-Energy Conformers ofN-Acetyl-Nâ€⁻-methylprolineamide. The Journal of Physical Chemistry, 1996, 100, 11589-11595.	2.9	40

#	Article	lF	CITATIONS
19	Ab initio and DFT conformational study of proline dipeptide. Computational and Theoretical Chemistry, 2004, 675, 37-45.	1.5	40
20	Assessment of CCSD(T), MP2, DFT-D, CBS-QB3, and G4(MP2) methods for conformational study of alanine and proline dipeptides. Chemical Physics Letters, 2014, 600, 112-117.	1.2	38
21	A pseudrotation model and ring-puckering of cyclopentane. Computational and Theoretical Chemistry, 1996, 362, 243-255.	1.5	36
22	Ring Flip of Proline Residue via the Transition State with an Envelope Conformation. Journal of Physical Chemistry B, 2004, 108, 5463-5465.	1.2	36
23	Thiazoleâ€Based γâ€Building Blocks as Reverseâ€Turn Mimetic to Design a Gramicidinâ€S Analogue: Conformational and Biological Evaluation. Chemistry - A European Journal, 2014, 20, 6713-6720.	1.7	36
24	Puckering Transition of Proline Residue in Water. Journal of Physical Chemistry B, 2007, 111, 10550-10556.	1.2	34
25	Conformational preferences and p <i>K</i> _a value of selenocysteine residue. Biopolymers, 2011, 95, 345-353.	1.2	34
26	12/10-Helical β-Peptide with Dynamic Folding Propensity: Coexistence of Right- and Left-Handed Helices in an Enantiomeric Foldamer. Journal of the American Chemical Society, 2016, 138, 13390-13395.	6.6	30
27	Intrinsic Torsional Potential Parameters for Conformational Analysis of Peptides and Proteins. The Journal of Physical Chemistry, 1996, 100, 15588-15598.	2.9	29
28	Conformational Preferences of Proline Analogues with Different Ring Size. Journal of Physical Chemistry B, 2007, 111, 3496-3507.	1.2	29
29	A Fast Method for Calculating Geometry-Dependent Net Atomic Charges for Polypeptides. Journal of Physical Chemistry B, 2001, 105, 3624-3634.	1.2	27
30	Determination of Nonbonded Potential Parameters for Peptides. The Journal of Physical Chemistry, 1995, 99, 13019-13027.	2.9	25
31	Conformational Preference and Cisâ^'Trans Isomerization of 4(R)-Substituted Proline Residues. Journal of Physical Chemistry B, 2006, 110, 1915-1927.	1.2	25
32	Conformational Preferences and cisâ~'trans Isomerization of Azaproline Residue. Journal of Physical Chemistry B, 2007, 111, 5377-5385.	1.2	25
33	Conformational preference and <i>cis–trans</i> isomerization of 4â€methylproline residues. Biopolymers, 2011, 95, 51-61.	1.2	25
34	Puckering Transition of 4-Substituted Proline Residues. Journal of Physical Chemistry B, 2005, 109, 16982-16987.	1.2	24
35	Local Control of the <i>Cis</i> – <i>Trans</i> Isomerization and Backbone Dihedral Angles in Peptides Using Trifluoromethylated Pseudoprolines. Journal of Physical Chemistry B, 2012, 116, 4069-4079.	1.2	24
36	Conformational Preferences of Pseudoproline Residues. Journal of Physical Chemistry B, 2007, 111, 12551-12562.	1.2	23

#	Article	IF	CITATIONS
37	Remote Stereoinductive Intramolecular Nitrile Oxide Cycloaddition: Asymmetric Total Synthesis and Structure Revision of (â~')-11β-Hydroxycurvularin. Journal of Organic Chemistry, 2016, 81, 2612-2617.	1.7	20
38	cis – trans Isomerization of N -acetyl- N ′-methylamides of 5-methylproline and 5,5-dimethylproline. Computational and Theoretical Chemistry, 2002, 585, 209-221.	1.5	19
39	Ab initio conformational study of N-acetyl-l-proline-N′,N′-dimethylamide: a model for polyproline. Biophysical Chemistry, 2005, 113, 93-101.	1.5	19
40	Comparative conformational study of N-acetyl-N′-methylprolineamide with different basis sets. Computational and Theoretical Chemistry, 2002, 593, 55-64.	1.5	18
41	Conformational preferences of Î ³ -aminobutyric acid in the gas phase and in water. Journal of Molecular Structure, 2012, 1024, 163-169.	1.8	18
42	The triple helical structure and stability of collagen model peptide with 4(<i>s</i>)â€hydroxyprolylâ€proâ€gly units. Biopolymers, 2012, 98, 111-121.	1.2	18
43	An Efficient Method for Calculating Atomic Charges of Peptides and Proteins from Electronic Populations. Journal of Physical Chemistry B, 2008, 112, 5470-5478.	1.2	17
44	Computationally designed βâ€ŧurn foldamers of γâ€peptides based on 2â€(aminomethyl)cyclohexanecarboxylic acid. Biopolymers, 2012, 97, 1018-1025.	1.2	17
45	Preferred conformations of RGDX tetrapeptides to inhibit the binding of fibrinogen to platelets. Biopolymers, 2002, 63, 298-313.	1.2	16
46	Altering the Cyclization Modes: Temperature-Dependent Intramolecular 7- <i>Endo-Dig</i> vs 6- <i>Endo-Dig</i> Electrophilic Ring Closures. Organic Letters, 2017, 19, 1474-1477.	2.4	16
47	Transition of prolyl puckering in a model of polyproline. Computational and Theoretical Chemistry, 2005, 718, 17-21.	1.5	15
48	Puckering transitions of pseudoproline residues. Biopolymers, 2009, 91, 444-455.	1.2	15
49	Tailoring the Physicochemical Properties of Antimicrobial Peptides onto a Thiazole-Based γ-Peptide Foldamer. Journal of Medicinal Chemistry, 2020, 63, 9168-9180.	2.9	15
50	Determination of Potential Parameters for Amino Acid Zwitterions. The Journal of Physical Chemistry, 1996, 100, 17670-17677.	2.9	14
51	Prospect of Thiazoleâ€based γâ€Peptide Foldamers in Enamine Catalysis: Exploration of the Nitroâ€Michael Addition. Chemistry - A European Journal, 2019, 25, 7396-7401.	1.7	14
52	Conformational study of the dinucleotide dGpdCp-tetrapeptide Ala4 complex. Macromolecules, 1984, 17, 138-147.	2.2	13
53	Conformational Preferences and Cisâ~'Trans Isomerization of l-Lactic Acid Residue. Journal of Physical Chemistry B, 2008, 112, 9126-9134.	1.2	13
54	Conformational preferences and <i>cis–trans</i> isomerization of <scp>L</scp> â€3,4â€dehydroproline residue. Biopolymers, 2009, 92, 387-398.	1.2	13

#	Article	IF	CITATIONS
55	Conformation and hydration of acetylcholine. Journal of Molecular Structure, 1992, 269, 231-241.	1.8	12
56	Conformational preferences and prolyl <i>cis</i> – <i>trans</i> isomerization of phosphorylated Ser/Thrâ€Pro motifs. Biopolymers, 2010, 93, 330-339.	1.2	12
57	Exploring conformational preferences of alanine tetrapeptide by CCSD(T), MP2, and dispersion-corrected DFT methods. Chemical Physics Letters, 2018, 702, 69-75.	1.2	12
58	A mechanistic study supports a two-step mechanism for peptide bond formation on the ribosome. Physical Chemistry Chemical Physics, 2013, 15, 14931.	1.3	11
59	Assessment of CCSD(T), MP2, and DFT methods for the calculations of structures and interaction energies of the peptide backbone with water molecules. Chemical Physics Letters, 2017, 687, 23-30.	1.2	11
60	Which DFT levels of theory are appropriate in predicting the prolyl <i>cis</i> – <i>trans</i> isomerization in solution?. New Journal of Chemistry, 2019, 43, 17159-17173.	1.4	11
61	Conformational study of asialo-GM1 (GA1) ganglioside. , 1997, 42, 19-35.		10
62	Conformational Preferences and pKa Value of Cysteine Residue. Journal of Physical Chemistry B, 2008, 112, 11189-11193.	1.2	10
63	Conformation and hydration of aspartame. International Journal of Peptide and Protein Research, 1991, 38, 79-83.	0.1	10
64	Conformational Preferences of X-Pro Sequences: Ala-Pro and Aib-Pro Motifs. Journal of Physical Chemistry B, 2010, 114, 14077-14086.	1.2	10
65	Binding free energies of inhibitors to iron porphyrin complex as a model for Cytochrome P450. Biopolymers, 2012, 97, 219-228.	1.2	10
66	Conformational preferences of the 2-methylproline residue and its role in stabilizing Î ² -turn and polyproline II structures of peptides. New Journal of Chemistry, 2014, 38, 2831.	1.4	10
67	Propensities of peptides containing the <scp>A</scp> snâ€ <scp>G</scp> ly segment to form βâ€ŧurn and βâ€hairpin structures. Biopolymers, 2016, 105, 653-664.	1.2	10
68	Conformational Preferences of Glycerol in the Gas Phase and in Water. Bulletin of the Korean Chemical Society, 2012, 33, 917-924.	1.0	10
69	Reagent-free intramolecular hydrofunctionalization: a regioselective 6- <i>endo-dig</i> cyclization of <i>o</i> -alkynoylphenols. Green Chemistry, 2022, 24, 2376-2384.	4.6	10
70	Strength of CH···π interactions in the Câ€ŧerminal subdomain of villin headpiece. Biopolymers, 2012, 97, 778-788.	1.2	9
71	Conformational preferences of helix foldamers of γâ€peptides based on 2â€(aminomethyl)cyclohexanecarboxylic acid. Biopolymers, 2014, 101, 87-95.	1.2	9
72	C _{9/12} Ribbonâ€Like Structures in Hybrid Peptides Alternating α―and Thiazoleâ€Based γâ€Amino Acids. Chemistry - A European Journal, 2017, 23, 17584-17591.	1.7	9

#	Article	IF	CITATIONS
73	Puckering transitions in cyclohexane: Revisited. Chemical Physics Letters, 2018, 702, 82-89.	1.2	9
74	Conformational study of trinucleoside tetraphosphate d(pCpGpCp): Transition of right-handed form to left-handed form. Biopolymers, 1984, 23, 511-536.	1.2	8
75	A histidine substitution confers metal binding affinity to a Schistosoma japonicum Glutathione S-transferase. Protein Expression and Purification, 2010, 73, 74-77.	0.6	8
76	Helix foldamers of \hat{I}^3 -peptides based on 2-aminocyclohexylacetic acid: a computational study. New Journal of Chemistry, 2014, 38, 966.	1.4	8
77	Helix foldamers of Î ³ -peptides based on 2-aminocyclopentylacetic acid. New Journal of Chemistry, 2015, 39, 3241-3249.	1.4	8
78	Conformational study on proline-containing tripeptides of ribonuclease T1. The Journal of Physical Chemistry, 1993, 97, 9248-9258.	2.9	7
79	Conformational preferences of 4â€chloroproline residues. Biopolymers, 2012, 97, 629-641.	1.2	7
80	Conformational preferences of taurine in the gas phase and in water. Computational and Theoretical Chemistry, 2013, 1025, 8-15.	1.1	7
81	Allylic Azide Rearrangements Investigated by Density Functional Theory Calculations. Bulletin of the Korean Chemical Society, 2017, 38, 1419-1426.	1.0	7
82	PMFF: Development of a Physics-Based Molecular Force Field for Protein Simulation and Ligand Docking. Journal of Physical Chemistry B, 2020, 124, 974-989.	1.2	7
83	Low-energy conformations of two lysine-containing tetrapeptides of collagen: Implications for posttranslational lysine hydroxylation. Biopolymers, 1987, 26, 1781-1788.	1.2	6
84	Conformation and sweet tastes ofL-aspartyl dipeptide methyl esters. Biopolymers, 1994, 34, 1037-1048.	1.2	6
85	Ab initio MO study on model compounds of malonyl-CoA: malonic acid and malonyl methyl sulfide. Computational and Theoretical Chemistry, 1996, 369, 145-156.	1.5	6
86	Preferred conformations of a linear RGD tripeptide. Chemical Biology and Drug Design, 2000, 56, 360-372.	1.2	6
87	Conformational analysis of poly(2-hydroxyethyl methacrylate). Journal of Polymer Science Part A, 1991, 29, 393-398.	2.5	5
88	Preferred conformations of cyclic Ac–Cys–Pro–Xaa–Cys–NHMe peptides: a model for chain reversal and active site of disulfide oxidoreductase. Biophysical Chemistry, 2003, 105, 89-104.	1.5	5
89	Influence of substituents on conformational preferences of helix foldamers of γâ€dipeptides. Biopolymers, 2014, 101, 1077-1087.	1.2	5
90	Propensities to form the β-turn and β-hairpin structures of <scp>d</scp> -Pro-Gly and Aib- <scp>d</scp> -Ala containing peptides: a computational study. New Journal of Chemistry, 2016, 40, 8565-8578.	1.4	5

#	Article	IF	CITATIONS
91	Conformational analysis of some antibacterial agent 4-aminodiphenyl sulfones. Archives of Pharmacal Research, 1990, 13, 43-50.	2.7	4
92	Ab Initio Molecular Orbital Calculations onN-β-Mercaptoethylacetamide and Its Derivatives as Model Compounds of Coenzyme A (CoA), Acetyl-CoA, and Malonyl-CoA. Journal of Physical Chemistry B, 1997, 101, 7001-7006.	1.2	4
93	Conformational preferences of <i>N</i> â€methoxycarbonyl proline dipeptide. Journal of Computational Chemistry, 2009, 30, 1116-1127.	1.5	4
94	Conformational preferences and antimicrobial activities of alkanediols. Computational and Theoretical Chemistry, 2015, 1064, 15-24.	1.1	4
95	Conformational preferences of Î ² -sheet structures in cyclopropane-containing Î ³ -peptides. New Journal of Chemistry, 2015, 39, 4640-4646.	1.4	4
96	Organocatalytic Asymmetric Addition of Aldehyde to Nitroolefin by H- <scp>d</scp> -Pro-Pro-Glu-NH ₂ : A Mechanistic Study. ACS Omega, 2019, 4, 8862-8873.	1.6	4
97	Conformational preferences of cationic \hat{l}^2 -peptide in water studied by CCSD(T), MP2, and DFT methods. Heliyon, 2020, 6, e04721.	1.4	4
98	Mechanistic study of hemicucurbit[6]uril formation by step-growth oligomerization and end-to-end cyclization. Chemical Physics Letters, 2017, 669, 92-98.	1.2	3
99	Conformation and activity of ⁺ H ₂ â€Proâ€Leuâ€Clyâ€NH ₂ and its analogues modified at the leucyl residue. International Journal of Peptide and Protein Research, 1995, 46, 381-390.	0.1	2
100	Hairpin formation promoted by the heterochiral dinipecotic acid segment: A DFT study. Biopolymers, 2015, 103, 609-617.	1.2	2
101	Conformational Preferences of Cyclopentaneâ€Based Oligoâ€î´â€peptides in the Gas Phase and in Solution. ChemPlusChem, 2021, 86, 533-539.	1.3	2
102	Semiempirical MO study on malonyl-CoA. Part 2. Malonyl-AMP. Computational and Theoretical Chemistry, 1996, 365, 201-209.	1.5	1
103	The Rate Enhancement for Prolyl Cis-to-Trans Isomerization of Cyclic CPFC Peptide Is Caused by an Increase in the Vibrational Entropy of the Transition State. Journal of Physical Chemistry B, 2008, 112, 3287-3289.	1.2	1
104	Reply to "comment on â€~binding free energies of inhibitors to iron porphyrin complex as a model for cytochrome P450'― Biopolymers, 2012, 97, 649-650.	1.2	1
105	Effects of isosteric substitutions on the conformational preference and cis–trans isomerization of proline-containing peptides. New Journal of Chemistry, 2017, 41, 6593-6606.	1.4	1
106	Puckering transition of the proline residue along the pseudorotational path: revisited. New Journal of Chemistry, 2021, 45, 9780-9793.	1.4	1
107	Exploring Helical Folding in Oligomers of Cyclopentaneâ€Based ϵâ€Amino Acids: A Computational Study. ChemistryOpen, 2022, , e202100253.	0.9	1
108	Preferred conformations of a linear RGD tripeptide. Chemical Biology and Drug Design, 2001, 58, 90-90.	1.2	0

#	ARTICLE	IF	CITATIONS
109	Proline puckering and cis-trans isomerization of proline-containing peptides. , 2002, , 420-421.		Ο
110	Exploring Helical Folding in Oligomers of Cyclopentaneâ€Based ϵâ€Amino Acids: A Computational Study. ChemistryOpen, 2022, 11, e202200035.	0.9	0