Satoshi Kajiyama

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/3449118/satoshi-kajiyama-publications-by-year.pdf

Version: 2024-04-18

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

28 16 28 1,953 h-index g-index citations papers 2,261 28 9.1 4.93 L-index ext. citations avg, IF ext. papers

#	Paper	IF	Citations
28	Gemini Thermotropic Smectic Liquid Crystals for Two-Dimensional Nanostructured Water-Treatment Membranes. <i>ACS Applied Materials & Distriction (Control of the Control of t</i>	9.5	7
27	Bioinspired selective synthesis of liquid-crystalline nanocomposites: formation of calcium carbonate-based composite nanodisks and nanorods. <i>Nanoscale Advances</i> , 2020 , 2, 2326-2332	5.1	4
26	Shear-induced liquid-crystalline phase transition behaviour of colloidal solutions of hydroxyapatite nanorod composites. <i>Nanoscale</i> , 2020 , 12, 11468-11479	7.7	5
25	Nanostructured liquid-crystalline Li-ion conductors with high oxidation resistance: molecular design strategy towards safe and high-voltage-operation Li-ion batteries. <i>Chemical Science</i> , 2020 , 11, 10631-10	63 1	13
24	Liquid-Crystalline Hydroxyapatite/Polymer Nanorod Hybrids: Potential Bioplatform for Photodynamic Therapy and Cellular Scaffolds. <i>ACS Applied Materials & Description (Control of the Photodynamic Control of the Photodynamic Co</i>	197565	18
23	Tuning the c-Axis Orientation of Calcium Phosphate Hybrid Thin Films Using Polymer Templates. <i>Langmuir</i> , 2019 , 35, 4077-4084	4	4
22	Development of biomineralization-inspired hybrids based on Ethitin and zinc hydroxide carbonate and their conversion into zinc oxide thin films. <i>CrystEngComm</i> , 2019 , 21, 2893-2899	3.3	O
21	Negative dielectric constant of water confined in nanosheets. <i>Nature Communications</i> , 2019 , 10, 850	17.4	68
20	MXene as a Charge Storage Host. Accounts of Chemical Research, 2018, 51, 591-599	24.3	203
19	Stimuli-responsive hydroxyapatite liquid crystal with macroscopically controllable ordering and magneto-optical functions. <i>Nature Communications</i> , 2018 , 9, 568	17.4	53
18	Noncovalent Approach to Liquid-Crystalline Ion Conductors: High-Rate Performances and Room-Temperature Operation for Li-Ion Batteries. <i>ACS Omega</i> , 2018 , 3, 159-166	3.9	19
17	Bioinspired Environmentally Friendly Amorphous CaCO-Based Transparent Composites Comprising Cellulose Nanofibers. <i>ACS Omega</i> , 2018 , 3, 12722-12729	3.9	13
16	Enhanced Li-Ion Accessibility in MXene Titanium Carbide by Steric Chloride Termination. <i>Advanced Energy Materials</i> , 2017 , 7, 1601873	21.8	124
15	One-dimensional supramolecular hybrids: self-assembled nanofibrous materials based on a sugar gelator and calcite developed along an unusual axis. <i>CrystEngComm</i> , 2017 , 19, 1580-1584	3.3	7
14	Macromolecular templates for biomineralization-inspired crystallization of oriented layered zinc hydroxides. <i>Polymer Journal</i> , 2017 , 49, 735-739	2.7	2
13	Sodium-Ion Intercalation Mechanism in MXene Nanosheets. ACS Nano, 2016, 10, 3334-41	16.7	315
12	Potentiometric Study to Reveal Reaction Entropy Behavior of Biphasic Na1+2xV2(PO4)3 Electrodes. <i>Electrochemistry</i> , 2016 , 84, 234-237	1.2	6

LIST OF PUBLICATIONS

11	approach to self-organization of free-standing thin-film HAP-based nanohybrids. <i>CrystEngComm</i> , 2016 , 18, 8388-8395	3.3	14
10	Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors. <i>Nature Communications</i> , 2015 , 6, 6544	17.4	707
9	Liquid-crystalline calcium carbonate: biomimetic synthesis and alignment of nanorod calcite. <i>Chemical Science</i> , 2015 , 6, 6230-6234	9.4	24
8	Formation of Helically Structured Chitin/CaCO3 Hybrids through an Approach Inspired by the Biomineralization Processes of Crustacean Cuticles. <i>Small</i> , 2015 , 11, 5127-33	11	53
7	Assembly of Na3V2(PO4)3 nanoparticles confined in a one-dimensional carbon sheath for enhanced sodium-ion cathode properties. <i>Chemistry - A European Journal</i> , 2014 , 20, 12636-40	4.8	63
6	Phase separation of a hexacyanoferrate-bridged coordination framework under electrochemical na-ion insertion. <i>Inorganic Chemistry</i> , 2014 , 53, 3141-7	5.1	23
5	Aragonite nanorods in calcium carbonate/polymer hybrids formed through self-organization processes from amorphous calcium carbonate solution. <i>Small</i> , 2014 , 10, 1634-41	11	42
4	Formation of Rectangular Plate-like EMnOOH and Sheet-like EMnOOH by Slow Diffusion of Ammonia Vapor. <i>Chemistry Letters</i> , 2013 , 42, 341-343	1.7	4
3	CaCO3/Chitin hybrids: recombinant acidic peptides based on a peptide extracted from the exoskeleton of a crayfish controls the structures of the hybrids. <i>Faraday Discussions</i> , 2012 , 159, 483	3.6	20
2	Selective synthesis and thin-film formation of Eobalt hydroxide through an approach inspired by biomineralization. <i>Journal of Materials Chemistry</i> , 2008 , 18, 4140		35
1	Nanosegregated Amorphous Composites of Calcium Carbonate and an Organic Polymer. <i>Advanced Materials</i> , 2008 , 20, 3633-3637	24	107