Satoshi Kajiyama

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3449118/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pseudocapacitance of MXene nanosheets for high-power sodium-ion hybrid capacitors. Nature Communications, 2015, 6, 6544.	12.8	873
2	Sodium-Ion Intercalation Mechanism in MXene Nanosheets. ACS Nano, 2016, 10, 3334-3341.	14.6	448
3	MXene as a Charge Storage Host. Accounts of Chemical Research, 2018, 51, 591-599.	15.6	309
4	Enhanced Liâ€lon Accessibility in MXene Titanium Carbide by Steric Chloride Termination. Advanced Energy Materials, 2017, 7, 1601873.	19.5	212
5	Nanosegregated Amorphous Composites of Calcium Carbonate and an Organic Polymer. Advanced Materials, 2008, 20, 3633-3637.	21.0	119
6	Negative dielectric constant of water confined in nanosheets. Nature Communications, 2019, 10, 850.	12.8	116
7	Stimuli-responsive hydroxyapatite liquid crystal with macroscopically controllable ordering and magneto-optical functions. Nature Communications, 2018, 9, 568.	12.8	74
8	Assembly of Na ₃ V ₂ (PO ₄) ₃ Nanoparticles Confined in a Oneâ€Dimensional Carbon Sheath for Enhanced Sodiumâ€Ion Cathode Properties. Chemistry - A European Journal, 2014, 20, 12636-12640.	3.3	72
9	Formation of Helically Structured Chitin/CaCO ₃ Hybrids through an Approach Inspired by the Biomineralization Processes of Crustacean Cuticles. Small, 2015, 11, 5127-5133.	10.0	69
10	Aragonite Nanorods in Calcium Carbonate/Polymer Hybrids Formed through Selfâ€Organization Processes from Amorphous Calcium Carbonate Solution. Small, 2014, 10, 1634-1641.	10.0	46
11	Selective synthesis and thin-film formation of α-cobalt hydroxide through an approach inspired by biomineralization. Journal of Materials Chemistry, 2008, 18, 4140.	6.7	40
12	Liquid-crystalline calcium carbonate: biomimetic synthesis and alignment of nanorod calcite. Chemical Science, 2015, 6, 6230-6234.	7.4	36
13	Liquid-Crystalline Hydroxyapatite/Polymer Nanorod Hybrids: Potential Bioplatform for Photodynamic Therapy and Cellular Scaffolds. ACS Applied Materials & Interfaces, 2019, 11, 17759-17765.	8.0	34
14	Noncovalent Approach to Liquid-Crystalline Ion Conductors: High-Rate Performances and Room-Temperature Operation for Li-Ion Batteries. ACS Omega, 2018, 3, 159-166.	3.5	29
15	Nanostructured liquid-crystalline Li-ion conductors with high oxidation resistance: molecular design strategy towards safe and high-voltage-operation Li-ion batteries. Chemical Science, 2020, 11, 10631-10637.	7.4	29
16	Phase Separation of a Hexacyanoferrate-Bridged Coordination Framework under Electrochemical Na-ion Insertion. Inorganic Chemistry, 2014, 53, 3141-3147.	4.0	25
17	CaCO3/Chitin hybrids: recombinant acidic peptides based on a peptide extracted from the exoskeleton of a crayfish controls the structures of the hybrids. Faraday Discussions, 2012, 159, 483.	3.2	22
18	Gemini Thermotropic Smectic Liquid Crystals for Two-Dimensional Nanostructured Water-Treatment Membranes. ACS Applied Materials & Interfaces, 2021, 13, 20598-20605.	8.0	22

SATOSHI ΚΑJIYAMA

#	Article	IF	CITATIONS
19	Rapid and topotactic transformation from octacalcium phosphate to hydroxyapatite (HAP): a new approach to self-organization of free-standing thin-film HAP-based nanohybrids. CrystEngComm, 2016, 18, 8388-8395.	2.6	21
20	Bioinspired Environmentally Friendly Amorphous CaCO ₃ -Based Transparent Composites Comprising Cellulose Nanofibers. ACS Omega, 2018, 3, 12722-12729.	3.5	21
21	Bioinspired selective synthesis of liquid-crystalline nanocomposites: formation of calcium carbonate-based composite nanodisks and nanorods. Nanoscale Advances, 2020, 2, 2326-2332.	4.6	11
22	Shear-induced liquid-crystalline phase transition behaviour of colloidal solutions of hydroxyapatite nanorod composites. Nanoscale, 2020, 12, 11468-11479.	5.6	11
23	Tuning the <i>c</i> -Axis Orientation of Calcium Phosphate Hybrid Thin Films Using Polymer Templates. Langmuir, 2019, 35, 4077-4084.	3.5	10
24	One-dimensional supramolecular hybrids: self-assembled nanofibrous materials based on a sugar gelator and calcite developed along an unusual axis. CrystEngComm, 2017, 19, 1580-1584.	2.6	9
25	Potentiometric Study to Reveal Reaction Entropy Behavior of Biphasic Na ₁₊₂ <i>_x</i> V ₂ (PO ₄) ₃ Electrodes. Electrochemistry, 2016, 84, 234-237.	1.4	7
26	Formation of Rectangular Plate-like α-MnOOH and Sheet-like γ-MnOOH by Slow Diffusion of Ammonia Vapor. Chemistry Letters, 2013, 42, 341-343.	1.3	5
27	Macromolecular templates for biomineralization-inspired crystallization of oriented layered zinc hydroxides. Polymer Journal, 2017, 49, 735-739.	2.7	4
28	Development of biomineralization-inspired hybrids based on β-chitin and zinc hydroxide carbonate and their conversion into zinc oxide thin films. CrystEngComm, 2019, 21, 2893-2899.	2.6	1