Maikel Colli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3449002/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The role of inflammation in insulitis and β-cell loss in type 1 diabetes. Nature Reviews Endocrinology, 2009, 5, 219-226.	9.6	847
2	The Human Pancreatic Islet Transcriptome: Expression of Candidate Genes for Type 1 Diabetes and the Impact of Pro-Inflammatory Cytokines. PLoS Genetics, 2012, 8, e1002552.	3.5	398
3	Conventional and Neo-antigenic Peptides Presented by β Cells Are Targeted by Circulating NaÃ ⁻ ve CD8+ T Cells in Type 1 Diabetic and Healthy Donors. Cell Metabolism, 2018, 28, 946-960.e6.	16.2	177
4	GLIS3, a Susceptibility Gene for Type 1 and Type 2 Diabetes, Modulates Pancreatic Beta Cell Apoptosis via Regulation of a Splice Variant of the BH3-Only Protein Bim. PLoS Genetics, 2013, 9, e1003532.	3.5	151
5	STAT1 Is a Master Regulator of Pancreatic β-Cell Apoptosis and Islet Inflammation. Journal of Biological Chemistry, 2011, 286, 929-941.	3.4	144
6	SARS-CoV-2 Receptor Angiotensin I-Converting Enzyme Type 2 (ACE2) Is Expressed in Human Pancreatic β-Cells and in the Human Pancreas Microvasculature. Frontiers in Endocrinology, 2020, 11, 596898.	3.5	144
7	PDL1 is expressed in the islets of people with type 1 diabetes and is up-regulated by interferons-α and-γ via IRF1 induction. EBioMedicine, 2018, 36, 367-375.	6.1	138
8	The impact of proinflammatory cytokines on the β-cell regulatory landscape provides insights into the genetics of type 1 diabetes. Nature Genetics, 2019, 51, 1588-1595.	21.4	117
9	MDA5 and PTPN2, two candidate genes for type 1 diabetes, modify pancreatic β-cell responses to the viral by-product double-stranded RNA. Human Molecular Genetics, 2010, 19, 135-146.	2.9	93
10	An integrated multi-omics approach identifies the landscape of interferon-α-mediated responses of human pancreatic beta cells. Nature Communications, 2020, 11, 2584.	12.8	87
11	Exposure to the Viral By-Product dsRNA or Coxsackievirus B5 Triggers Pancreatic Beta Cell Apoptosis via a Bim / Mcl-1 Imbalance. PLoS Pathogens, 2011, 7, e1002267.	4.7	52
12	IFN-α induces a preferential long-lasting expression of MHC class I in human pancreatic beta cells. Diabetologia, 2018, 61, 636-640.	6.3	50
13	The T1D-associated lncRNA <i>Lnc13</i> modulates human pancreatic β cell inflammation by allele-specific stabilization of <i>STAT1</i> mRNA. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 9022-9031.	7.1	43
14	Gene expression signatures of target tissues in type 1 diabetes, lupus erythematosus, multiple sclerosis, and rheumatoid arthritis. Science Advances, 2021, 7, .	10.3	42
15	Peptides Derived From Insulin Granule Proteins Are Targeted by CD8+ T Cells Across MHC Class I Restrictions in Humans and NOD Mice. Diabetes, 2020, 69, 2678-2690.	0.6	34
16	Revisiting the role of inflammation in the loss of pancreatic Î ² -cells in T1DM. Nature Reviews Endocrinology, 2020, 16, 611-612.	9.6	20
17	Molecular Footprints of the Immune Assault on Pancreatic Beta Cells in Type 1 Diabetes. Frontiers in Endocrinology, 2020, 11, 568446.	3.5	19
18	The RNA-binding profile of the splicing factor SRSF6 in immortalized human pancreatic β-cells. Life Science Alliance, 2021, 4, e202000825.	2.8	14

MAIKEL COLLI

#	Article	IF	CITATIONS
19	CD8+ T cells variably recognize native versus citrullinated GRP78 epitopes in type 1 diabetes. Diabetes, 2021, 70, db210259.	0.6	11
20	Pannexin-2-deficiency sensitizes pancreatic β-cells to cytokine-induced apoptosis inÂvitro and impairs glucose tolerance inÂvivo. Molecular and Cellular Endocrinology, 2017, 448, 108-121.	3.2	10
21	A functional genomic approach to identify reference genes for human pancreatic beta cell real-time quantitative RT-PCR analysis. Islets, 2021, 13, 51-65.	1.8	5
22	A Humanized Mouse Strain That Develops Spontaneously Immune-Mediated Diabetes. Frontiers in Immunology, 2021, 12, 748679.	4.8	5