Yusuke Marikawa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/344846/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Polarity-Dependent Distribution of Angiomotin Localizes Hippo Signaling in Preimplantation Embryos. Current Biology, 2013, 23, 1181-1194.	3.9	352
2	Establishment of trophectoderm and inner cell mass lineages in the mouse embryo. Molecular Reproduction and Development, 2009, 76, 1019-1032.	2.0	108
3	Aggregated P19 mouse embryonal carcinoma cells as a simple in vitro model to study the molecular regulations of mesoderm formation and axial elongation morphogenesis. Genesis, 2009, 47, 93-106.	1.6	84
4	Deviation of the Blastocyst Axis from the First Cleavage Plane Does Not Affect the Quality of Mouse Postimplantation Development. Biology of Reproduction, 2003, 69, 1208-1212.	2.7	77
5	Wnt/ \hat{l}^2 -catenin signaling and body plan formation in mouse embryos. Seminars in Cell and Developmental Biology, 2006, 17, 175-184.	5.0	72
6	Gradual DNA demethylation of theOct4 promoter in cloned mouse embryos. Molecular Reproduction and Development, 2006, 73, 180-188.	2.0	65
7	Creation of Trophectoderm, the First Epithelium, in Mouse Preimplantation Development. Results and Problems in Cell Differentiation, 2012, 55, 165-184.	0.7	50
8	Unbiased contribution of the first two blastomeres to mouse blastocyst development. Molecular Reproduction and Development, 2005, 72, 354-361.	2.0	46
9	Dorsal Determinants in theXenopusEgg Are Firmly Associated with the Vegetal Cortex and Behave like Activators of theWntPathway. Developmental Biology, 1997, 191, 69-79.	2.0	42
10	Exposure-based assessment of chemical teratogenicity using morphogenetic aggregates of human embryonic stem cells. Reproductive Toxicology, 2020, 91, 74-91.	2.9	33
11	Misexpression of <i>Six2</i> is associated with heritable frontonasal dysplasia and renal hypoplasia in 3H1 <i>Br</i> mice. Developmental Dynamics, 2008, 237, 1767-1779.	1.8	32
12	Use of <i>In Vitro</i> Morphogenesis of Mouse Embryoid Bodies to Assess Developmental Toxicity of Therapeutic Drugs Contraindicated in Pregnancy. Toxicological Sciences, 2016, 149, 15-30.	3.1	29
13	Adverse effect of valproic acid on an in vitro gastrulation model entails activation of retinoic acid signaling. Reproductive Toxicology, 2016, 66, 68-83.	2.9	27
14	Spatial alignment of the mouse blastocyst axis across the first cleavage plane is caused by mechanical constraint rather than developmental bias among blastomeres. Molecular Reproduction and Development, 2008, 75, 1143-1153.	2.0	26
15	Morphologyâ€based mammalian stem cell tests reveal potential developmental toxicity of donepezil. Molecular Reproduction and Development, 2014, 81, 994-1008.	2.0	24
16	Exposure-Based Validation of an In Vitro Gastrulation Model for Developmental Toxicity Assays. Toxicological Sciences, 2017, 157, 235-245.	3.1	24
17	Nkx1-2 is a transcriptional repressor and is essential for the activation of Brachyury in P19 mouse embryonal carcinoma cell. Differentiation, 2012, 83, 282-292.	1.9	22
18	Fluoxetine Inhibits Canonical Wnt Signaling to Impair Embryoid Body Morphogenesis: Potential Teratogenic Mechanisms of a Commonly Used Antidepressant. Toxicological Sciences, 2018, 165, 372-388.	3.1	21

Yusuke Marikawa

#	Article	IF	CITATIONS
19	Statins inhibit blastocyst formation by preventing geranylgeranylation. Molecular Human Reproduction, 2016, 22, 350-363.	2.8	20
20	Gastruloids: Pluripotent stem cell models of mammalian gastrulation and embryo engineering. Developmental Biology, 2022, 488, 35-46.	2.0	20
21	Regulation of the Trunk–Tail Patterning in the Ascidian Embryo: A Possible Interaction of Cascades between Lithium/β-Catenin and Localized Maternal Factor pem. Developmental Biology, 1998, 202, 264-279.	2.0	19
22	Ectopic expression of mouse Sry interferes with Wnt/β-catenin signaling in mouse embryonal carcinoma cell lines. Biochimica Et Biophysica Acta - General Subjects, 2008, 1780, 1395-1402.	2.4	19
23	Dual Roles of Oct4 in the Maintenance of Mouse P19 Embryonal Carcinoma Cells: As Negative Regulator of Wnt/β-Catenin Signaling and Competence Provider for Brachyury Induction. Stem Cells and Development, 2011, 20, 621-633.	2.1	19
24	Heterogeneous DNA Methylation Status of the Regulatory Element of the Mouse Oct4 Gene in Adult Somatic Cell Population. Cloning and Stem Cells, 2005, 7, 8-16.	2.6	18
25	An enhancer-trap LacZ transgene reveals a distinct expression pattern of Kinesin family 26B in mouse embryos. Development Genes and Evolution, 2004, 214, 64-71.	0.9	17
26	An in vitro gastrulation model recapitulates the morphogenetic impact of pharmacological inhibitors of developmental signaling pathways. Molecular Reproduction and Development, 2015, 82, 1015-1036.	2.0	17
27	RHOA activity in expanding blastocysts is essential to regulate HIPPO-YAP signaling and to maintain the trophectoderm-specific gene expression program in a ROCK/actin filament-independent manner. Molecular Human Reproduction, 2019, 25, 43-60.	2.8	16
28	Regulation of developmental competence and commitment towards the definitive endoderm lineage in human embryonic stem cells. Stem Cell Research, 2013, 10, 489-502.	0.7	12
29	Developmental toxicity assessment of common excipients using a stem cell-based inÂvitro morphogenesis model. Food and Chemical Toxicology, 2017, 109, 376-385.	3.6	11
30	ROCK and RHO Playlist for Preimplantation Development: Streaming to HIPPO Pathway and Apicobasal Polarity in the First Cell Differentiation. Advances in Anatomy, Embryology and Cell Biology, 2018, 229, 47-68.	1.6	10
31	Dolutegravir Impairs Stem Cell-Based 3D Morphogenesis Models in a Manner Dependent on Dose and Timing of Exposure: An Implication for Its Developmental Toxicity. Toxicological Sciences, 2021, 184, 191-203.	3.1	10
32	Embryoid body test with morphological and molecular endpoints implicates potential developmental toxicity of trans-resveratrol. Toxicology and Applied Pharmacology, 2018, 355, 211-225.	2.8	8
33	Toward better assessments of developmental toxicity using stem cellâ€based in vitro embryogenesis models. Birth Defects Research, 2022, 114, 972-982.	1.5	7
34	A potential use of embryonic stem cell medium for the in vitro culture of preimplantation embryos. Journal of Assisted Reproduction and Genetics, 2011, 28, 659-668.	2.5	6
35	Remdesivir impairs mouse preimplantation embryo development at therapeutic concentrations. Reproductive Toxicology, 2022, , .	2.9	6
36	Methoxyacetic acid inhibits histone deacetylase and impairs axial elongation morphogenesis of mouse gastruloids in a retinoic acid signalingâ€dependent manner. Birth Defects Research, 2020, 112, 1043-1056.	1.5	4

#	Article	IF	CITATIONS
37	Regulation of endoplasmic reticulum stress and trophectoderm lineage specification by the mevalonate pathway in the mouse preimplantation embryo. Molecular Human Reproduction, 2021, 27, .	2.8	4
38	Regulation of Mesendoderm Formation and Axial Elongation by Wnt Signaling in Mouse Embryonal Carcinoma Cells Biology of Reproduction, 2008, 78, 132-132.	2.7	1
39	Trophectoderm Development. , 2018, , 326-331.		0