
Rafael Maciel-de-Freitas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3448143/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	High throughput estimates of Wolbachia, Zika and chikungunya infection in Aedes aegypti by near-infrared spectroscopy to improve arbovirus surveillance. Communications Biology, 2021, 4, 67.	2.0	15
2	Comprehensive Quantitative Proteome Analysis of Aedes aegypti Identifies Proteins and Pathways Involved in Wolbachia pipientis and Zika Virus Interference Phenomenon. Frontiers in Physiology, 2021, 12, 642237.	1.3	17
3	Influence of Larval Habitat Environmental Characteristics on Culicidae Immature Abundance and Body Size of Adult Aedes aegypti. Frontiers in Ecology and Evolution, 2021, 9, .	1.1	17
4	The adoption of the One Health approach to improve surveillance of venomous animal injury, vector-borne and zoonotic diseases in Foz do Iguaçu, Brazil. PLoS Neglected Tropical Diseases, 2021, 15, e0009109.	1.3	15
5	The application of spectroscopy techniques for diagnosis of malaria parasites and arboviruses and surveillance of mosquito vectors: A systematic review and critical appraisal of evidence. PLoS Neglected Tropical Diseases, 2021, 15, e0009218.	1.3	21
6	Near infrared spectroscopy accurately detects Trypanosoma cruzi non-destructively in midguts, rectum and excreta samples of Triatoma infestans. Scientific Reports, 2021, 11, 23884.	1.6	5
7	Reply to: "Enhancement of Aedes aegypti susceptibility to dengue by Wolbachia is not supportedâ€ . Nature Communications, 2020, 11, 6113.	5.8	0
8	Aedes aegypti insecticide resistance underlies the success (and failure) of Wolbachia population replacement. Scientific Reports, 2020, 10, 63.	1.6	36
9	Ovitraps Provide a Reliable Estimate of Wolbachia Frequency during wMelBr Strain Deployment in a Geographically Isolated Aedes aegypti Population. Insects, 2020, 11, 92.	1.0	4
10	Synthetic sex-aggregation pheromone of Lutzomyia longipalpis, the South American sand fly vector of Leishmania infantum, attracts males and females over long-distance. PLoS Neglected Tropical Diseases, 2020, 14, e0008798.	1.3	9
11	Limited risk of Zika virus transmission by five Aedes albopictus populations from Spain. Parasites and Vectors, 2019, 12, 150.	1.0	19
12	Matching the genetics of released and local Aedes aegypti populations is critical to assure Wolbachia invasion. PLoS Neglected Tropical Diseases, 2019, 13, e0007023.	1.3	125
13	Variation in Wolbachia effects on Aedes mosquitoes as a determinant of invasiveness and vectorial capacity. Nature Communications, 2018, 9, 1483.	5.8	47
14	Zika Virus Infection Produces a Reduction on Aedes aegypti Lifespan but No Effects on Mosquito Fecundity and Oviposition Success. Frontiers in Microbiology, 2018, 9, 3011.	1.5	23
15	Diversity of <i>Anopheles</i> mosquitoes from four landscapes in the highest endemic region of malaria transmission in Brazil. Journal of Vector Ecology, 2018, 43, 235-244.	0.5	12
16	Insecticide Resistance and Fitness: The Case of Four <i> Aedes aegypti</i> Populations from Different Brazilian Regions. BioMed Research International, 2018, 2018, 1-12.	0.9	32
17	Levels of Resistance to Pyrethroid among Distinct <i>kdr</i> Alleles in <i>Aedes aegypti</i> Laboratory Lines and Frequency of <i>kdr</i> Alleles in 27 Natural Populations from Rio de Janeiro, Brazil. BioMed Research International, 2018, 2018, 1-10.	0.9	37
18	Distribution and breeding sites of Aedes aegypti and Aedes albopictus in 32 urban/peri-urban districts of Mozambique: implication for assessing the risk of arbovirus outbreaks. PLoS Neglected Tropical Diseases, 2018, 12, e0006692.	1.3	45

RAFAEL MACIEL-DE-FREITAS

#	Article	IF	CITATIONS
19	Rapid, noninvasive detection of Zika virus in <i>Aedes aegypti</i> mosquitoes by near-infrared spectroscopy. Science Advances, 2018, 4, eaat0496.	4.7	66
20	Should I stay or should I go? Movement of adult Triatoma sordida within the peridomestic area of a typical Brazilian Cerrado rural household. Parasites and Vectors, 2018, 11, 14.	1.0	11
21	The impact of the age of first blood meal and Zika virus infection on Aedes aegypti egg production and longevity. PLoS ONE, 2018, 13, e0200766.	1.1	20
22	Model-based inference from multiple dose, time course data reveals Wolbachia effects on infection profiles of type 1 dengue virus in Aedes aegypti. PLoS Neglected Tropical Diseases, 2018, 12, e0006339.	1.3	8
23	The impact of insecticide applications on the dynamics of resistance: The case of four Aedes aegypti populations from different Brazilian regions. PLoS Neglected Tropical Diseases, 2018, 12, e0006227.	1.3	51
24	Novel inference models for estimation of abundance, survivorship and recruitment in mosquito populations using mark-release-recapture data. PLoS Neglected Tropical Diseases, 2017, 11, e0005682.	1.3	9
25	How does competition among wild type mosquitoes influence the performance of Aedes aegypti and dissemination of Wolbachia pipientis?. PLoS Neglected Tropical Diseases, 2017, 11, e0005947.	1.3	17
26	Effects of environment, dietary regime and ageing on the dengue vector microbiota: evidence of a core microbiota throughout Aedes aegypti lifespan. Memorias Do Instituto Oswaldo Cruz, 2016, 111, 577-587.	0.8	96
27	Marking Triatoma brasiliensis, Triatoma pseudomaculata and Rhodnius nasutus Nymphs with Trace Elements: Element Persistence and Effects of Marking on Insect Mortality. PLoS Neglected Tropical Diseases, 2016, 10, e0004548.	1.3	2
28	The influence of larval competition on Brazilian Wolbachia-infected Aedes aegypti mosquitoes. Parasites and Vectors, 2016, 9, 282.	1.0	20
29	Using Wolbachia Releases to Estimate Aedes aegypti (Diptera: Culicidae) Population Size and Survival. PLoS ONE, 2016, 11, e0160196.	1.1	19
30	Contrasting genetic structure between mitochondrial and nuclear markers in the dengue fever mosquito from Rio de Janeiro: implications for vector control. Evolutionary Applications, 2015, 8, 901-915.	1.5	36
31	From Lab to Field: The Influence of Urban Landscapes on the Invasive Potential of Wolbachia in Brazilian Aedes aegypti Mosquitoes. PLoS Neglected Tropical Diseases, 2015, 9, e0003689.	1.3	81
32	Surveillance of Aedes aegypti: Comparison of House Index with Four Alternative Traps. PLoS Neglected Tropical Diseases, 2015, 9, e0003475.	1.3	79
33	A Bayesian Hierarchical Model for Estimation of Abundance and Spatial Density of Aedes aegypti. PLoS ONE, 2015, 10, e0123794.	1.1	31
34	Undesirable Consequences of Insecticide Resistance following Aedes aegypti Control Activities Due to a Dengue Outbreak. PLoS ONE, 2014, 9, e92424.	1.1	115
35	Discrepancies between Aedes aegypti identification in the field and in the laboratory after collection with a sticky trap. Memorias Do Instituto Oswaldo Cruz, 2014, 109, 824-827.	0.8	5
36	She's a femme fatale: low-density larval development produces good disease vectors. Memorias Do Instituto Oswaldo Cruz, 2014, 109, 1070-1077.	0.8	41

#	Article	IF	CITATIONS
37	Challenges encountered using standard vector control measures for dengue in Boa Vista, Brazil. Bulletin of the World Health Organization, 2014, 92, 685-689.	1.5	34
38	Preliminary evaluation on the efficiency of the kit Platelia Dengue NS1 Ag-ELISA to detect dengue virus in dried Aedes aegypti: a potential tool to improve dengue surveillance. Parasites and Vectors, 2014, 7, 155.	1.0	20
39	Modelling adult Aedes aegypti and Aedes albopictus survival at different temperatures in laboratory and field settings. Parasites and Vectors, 2013, 6, 351.	1.0	357
40	The use of the Premise Condition Index (PCI) to provide guidelines for <i>Aedes aegypti</i> surveys. Journal of Vector Ecology, 2013, 38, 190-192.	0.5	12
41	Age-Dependent Effects of Oral Infection with Dengue Virus on Aedes aegypti (Diptera: Culicidae) Feeding Behavior, Survival, Oviposition Success and Fecundity. PLoS ONE, 2013, 8, e59933.	1.1	69
42	The Influence of Dengue Virus Serotype-2 Infection on Aedes aegypti (Diptera: Culicidae) Motivation and Avidity to Blood Feed. PLoS ONE, 2013, 8, e65252.	1.1	35
43	Bionomics of Culex quinquefasciatus within urban areas of Rio de Janeiro, Southeastern Brazil. Revista De Saude Publica, 2012, 46, 858-865.	0.7	20
44	Why do we need alternative tools to control mosquito-borne diseases in Latin America?. Memorias Do Instituto Oswaldo Cruz, 2012, 107, 828-829.	0.8	45
45	Evaluation of RbCl and CrCl3 as markers of Triatoma brasiliensis (Hemiptera: Reduviidae) nymphs: persistence and influence of Rb and Cr on triatomine biology. Memorias Do Instituto Oswaldo Cruz, 2011, 106, 385-389.	0.8	2
46	Does targeting keyâ€containers effectively reduce <i>Aedes aegypti</i> population density?. Tropical Medicine and International Health, 2011, 16, 965-973.	1.0	48
47	Lower survival rate, longevity and fecundity of Aedes aegypti (Diptera: Culicidae) females orally challenged with dengue virus serotype 2. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2011, 105, 452-458.	0.7	83
48	Influence of the spatial distribution of human hosts and large size containers on the dispersal of the mosquito <i>Aedes aegypti</i> within the first gonotrophic cycle. Medical and Veterinary Entomology, 2010, 24, 74-82.	0.7	36
49	A REVIEW ON THE ECOLOGICAL DETERMINANTS OF AEDES AEGYPTI (DIPTERA: CULICIDAE) VECTORIAL CAPACITY. Oecologia Australis, 2010, 14, 726-736.	0.1	11
50	Presumed unconstrained dispersal of Aedes aegypti in the city of Rio de Janeiro, Brazil. Revista De Saude Publica, 2009, 43, 8-12.	0.7	47
51	Container productivity, daily survival rates and dispersal of Aedes aegypti mosquitoes in a high income dengue epidemic neighbourhood of Rio de Janeiro: presumed influence of differential urban structure on mosquito biology. Memorias Do Instituto Oswaldo Cruz, 2009, 104, 927-932.	0.8	66
52	Occurrence, productivity and spatial distribution of keyâ€premises in two dengueâ€endemic areas of Rio de Janeiro and their role in adult <i>Aedes aegypti</i> spatial infestation pattern. Tropical Medicine and International Health, 2008, 13, 1488-1494.	1.0	17
53	Calculating the survival rate and estimated population density of gravid Aedes aegypti (Diptera,) Tj ETQq1	1 0.784314 rgBT 0.4	/Oyerlock 1
54	Mosquito traps designed to capture Aedes aegypti (Diptera: Culicidae) females: preliminary comparison of Adultrap, MosquiTRAP and backpack aspirator efficiency in a dengue-endemic area of Brazil. Memorias Do Instituto Oswaldo Cruz, 2008, 103, 602-605.	0.8	45

#	Article	IF	CITATIONS
55	Variation in Aedes aegypti(Diptera: Culicidae) container productivity in a slum and a suburban district of Rio de Janeiro during dry and wet seasons. Memorias Do Instituto Oswaldo Cruz, 2007, 102, 489-496.	0.8	121
56	Body sizeâ€associated survival and dispersal rates of <i>Aedes aegypti</i> in Rio de Janeiro. Medical and Veterinary Entomology, 2007, 21, 284-292.	0.7	110
57	DAILY SURVIVAL RATES AND DISPERSAL OF AEDES AEGYPTI FEMALES IN RIO DE JANEIRO, BRAZIL. American Journal of Tropical Medicine and Hygiene, 2007, 76, 659-665.	0.6	123
58	Daily survival rates and dispersal of Aedes aegypti females in Rio de Janeiro, Brazil. American Journal of Tropical Medicine and Hygiene, 2007, 76, 659-65.	0.6	58
59	Field evaluation of effectiveness of the BG-Sentinel, a new trap for capturing adult Aedes aegypti (Diptera: Culicidae). Memorias Do Instituto Oswaldo Cruz, 2006, 101, 321-325.	0.8	168
60	Movement of Dengue Vectors Between the Human Modified Environment and an Urban Forest in Rio de Janeiro. Journal of Medical Entomology, 2006, 43, 1112-1120.	0.9	70
61	Movement of Dengue Vectors Between the Human Modified Environment and an Urban Forest in Rio de Janeiro. Journal of Medical Entomology, 2006, 43, 1112-1120.	0.9	45
62	Efficiency of rubidium marking in Aedes albopictus (Diptera: Culicidae): preliminary evaluation on persistence of egg labeling, survival, and fecundity of marked female. Memorias Do Instituto Oswaldo Cruz, 2004, 99, 823-827.	0.8	10
63	Interspecies Isobaric Labeling-Based Quantitative Proteomics Reveals Protein Changes in the Ovary of Aedes aegypti Coinfected With ZIKV and Wolbachia. Frontiers in Cellular and Infection Microbiology, 0, 12, .	1.8	2