List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3448051/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Native Cellulose: Structure, Characterization and Thermal Properties. Materials, 2014, 7, 6105-6119.	2.9	691
2	Thermal decomposition of wood: Influence of wood components and cellulose crystallite size. Bioresource Technology, 2012, 109, 148-153.	9.6	433
3	Thermal decomposition of wood: Kinetics and degradation mechanisms. Bioresource Technology, 2012, 126, 7-12.	9.6	243
4	Structural differences between wood species: Evidence from chemical composition, FTIR spectroscopy, and thermogravimetric analysis. Journal of Applied Polymer Science, 2012, 126, E337.	2.6	214
5	Influence of fiber content on the mechanical and dynamic mechanical properties of glass/ramie polymer composites. Materials & Design, 2013, 47, 9-15.	5.1	194
6	Crystalline properties and decomposition kinetics of cellulose fibers in wood pulp obtained by two pulping processes. Polymer Degradation and Stability, 2011, 96, 679-685.	5.8	181
7	Assessment of Avrami, Ozawa and Avrami–Ozawa equations for determination of EVA crosslinking kinetics from DSC measurements. Polymer Testing, 2008, 27, 722-729.	4.8	133
8	Mechanical and dynamic mechanical analysis of hybrid composites molded by resin transfer molding. Journal of Applied Polymer Science, 2010, 118, 887-896.	2.6	123
9	Preparation and characterization of montmorillonite modified with 3-aminopropyltriethoxysilane. Applied Clay Science, 2014, 87, 46-51.	5.2	121
10	Influence of Stacking Sequence on the Mechanical and Dynamic Mechanical Properties of Cotton/Glass Fiber Reinforced Polyester Composites. Materials Research, 2016, 19, 542-547.	1.3	120
11	Correlation of the thermal stability and the decomposition kinetics of six different vegetal fibers. Cellulose, 2014, 21, 177-188.	4.9	99
12	Materials produced from plant biomass: Part I: evaluation of thermal stability and pyrolysis of wood. Materials Research, 2010, 13, 375-379.	1.3	96
13	Dynamic mechanical characterization of epoxy/epoxycyclohexyl–POSS nanocomposites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 532, 339-345.	5.6	93
14	Characterization of composites based on expanded polystyrene wastes and wood flour. Waste Management, 2011, 31, 779-784.	7.4	92
15	Influence of fiber hybridization on the dynamic mechanical properties of glass/ramie fiber-reinforced polyester composites. Journal of Reinforced Plastics and Composites, 2012, 31, 1652-1661.	3.1	90
16	Dynamic-mechanical and thermomechanical properties of cellulose nanofiber/polyester resin composites. Carbohydrate Polymers, 2016, 136, 955-963.	10.2	89
17	Drying techniques applied to cellulose nanofibers. Journal of Reinforced Plastics and Composites, 2016, 35, 682-697.	3.1	86
18	Preparation and characterization of ramie-glass fiber reinforced polymer matrix hybrid composites. Materials Research, 2012, 15, 415-420.	1.3	79

#	Article	IF	CITATIONS
19	Producing aerogels from silanized cellulose nanofiber suspension. Cellulose, 2017, 24, 769-779.	4.9	78
20	The influence of silane surface modification on microcrystalline cellulose characteristics. Carbohydrate Polymers, 2020, 230, 115595.	10.2	65
21	Hybridization effect on the mechanical and dynamic mechanical properties of curaua composites. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 7285-7289.	5.6	64
22	Materials produced from plant biomass: part II: evaluation of crystallinity and degradation kinetics of cellulose. Materials Research, 2012, 15, 421-427.	1.3	61
23	Effects of wood flour addition and coupling agent content on mechanical properties of recycled polystyrene/wood flour composites. Journal of Thermoplastic Composite Materials, 2012, 25, 821-833.	4.2	59
24	Nanofibrillated cellulose from tobacco industry wastes. Carbohydrate Polymers, 2016, 148, 69-77.	10.2	55
25	Sodium montmorillonite modified with methacryloxy and vinylsilanes: Influence of silylation on the morphology of clay/unsaturated polyester nanocomposites. Applied Clay Science, 2015, 114, 550-557.	5.2	53
26	Thermal degradation behavior of cellulose nanofibers and nanowhiskers. Journal of Thermal Analysis and Calorimetry, 2016, 126, 1867-1878.	3.6	52
27	Materials produced from plant biomass: part III: degradation kinetics and hydrogen bonding in lignin. Materials Research, 2013, 16, 1065-1070.	1.3	47
28	Cellulose/biochar aerogels with excellent mechanical and thermal insulation properties. Cellulose, 2019, 26, 9071-9083.	4.9	46
29	Effect of the epoxycyclohexyl polyhedral oligomeric silsesquioxane content on the dynamic fragility of an epoxy resin. Journal of Non-Crystalline Solids, 2012, 358, 427-432.	3.1	44
30	Recent studies on modified cellulose/nanocellulose epoxy composites: A systematic review. Carbohydrate Polymers, 2021, 255, 117366.	10.2	44
31	Sorption capacity of hydrophobic cellulose cryogels silanized by two different methods. Cellulose, 2017, 24, 3421-3431.	4.9	41
32	Effect of cellulose nanowhiskers functionalization with polyaniline for epoxy coatings. Applied Surface Science, 2016, 364, 124-132.	6.1	40
33	Degradation of <scp>PLA</scp> and <scp>PLA</scp> in composites with triacetin and buriti fiber after 600 days in a simulated marine environment. Journal of Applied Polymer Science, 2016, 133, .	2.6	39
34	Effect of nanocellulose fibers and acetylated nanocellulose fibers on properties of poly(ethyleneâ€ <i>co</i> â€vinyl acetate) foams. Journal of Applied Polymer Science, 2017, 134, .	2.6	38
35	Oils sorption on hydrophobic nanocellulose aerogel obtained from the wood furniture industry waste. Cellulose, 2018, 25, 3105-3119.	4.9	38
36	Polyester-based powder coatings with montmorillonite nanoparticles applied on carbon steel. Progress in Organic Coatings, 2012, 73, 42-46.	3.9	37

#	Article	IF	CITATIONS
37	Characterization of composites based on recycled expanded polystyrene reinforced with curaua fibers. Journal of Applied Polymer Science, 2013, 128, 653-659.	2.6	35
38	Devulcanization of ethyleneâ€propyleneâ€diene polymer residues by microwave—Influence of the presence of paraffinic oil. Polymer Engineering and Science, 2011, 51, 697-703.	3.1	34
39	Thermal behavior and the compensation effect of vegetal fibers. Cellulose, 2014, 21, 189-201.	4.9	32
40	Characterization of polystyrene nanocomposites and expanded nanocomposites reinforced with cellulose nanofibers and nanocrystals. Cellulose, 2019, 26, 4417-4429.	4.9	32
41	Polyaniline coated core-shell polyacrylates: Control of film formation and coating application for corrosion protection. Progress in Organic Coatings, 2019, 128, 40-51.	3.9	32
42	The influence of wood flour particle size and content on the rheological, physical, mechanical and morphological properties of EVA/wood cellular composites. Materials & Design, 2014, 57, 660-666.	5.1	31
43	Synthesis and characterization of thermoplastic polyurethane/nanoclay composites. Materials Science and Engineering C, 2009, 29, 474-478.	7.3	30
44	Effect of stacking sequence and porosity on creep behavior of glass/epoxy and carbon/epoxy hybrid laminate composites. Composites Communications, 2020, 19, 210-219.	6.3	30
45	Influence of physical interaction between organoclay and poly(ethylene-co-vinyl acetate) matrix and effect of clay content on rheological melt state. Polymer, 2010, 51, 5165-5171.	3.8	29
46	Cellulose Nanowhiskers Extracted from Tempo-Oxidized Curaua Fibers. Journal of Natural Fibers, 2020, 17, 1355-1365.	3.1	29
47	Thermal characterization of oil extracted from ethylene–propylene–diene terpolymer residues (EPDM-r). Thermochimica Acta, 2010, 510, 93-96.	2.7	28
48	Composites of Recycled PET Reinforced with Short Glass Fiber. Journal of Thermoplastic Composite Materials, 2012, 25, 747-764.	4.2	28
49	Effect of clay silylation on curing and mechanical and thermal properties of unsaturated polyester/montmorillonite nanocomposites. Journal of Physics and Chemistry of Solids, 2015, 87, 9-15.	4.0	28
50	Influence of calcium carbonate on RTM and RTM light processing and properties of molded composites. Journal of Reinforced Plastics and Composites, 2011, 30, 1213-1221.	3.1	27
51	Efeito do tratamento alcalino de fibras de curauÃ; sobre as propriedades de compósitos de matriz biodegradÃ;vel. Polimeros, 2014, 24, 388-394.	0.7	27
52	Caracterização de resÃduos de copolÃmeros de etileno-acetato de vinila - EVA. Polimeros, 2005, 15, 73-78.	0.7	26
53	Microstructure and Crystallization Kinetics of Polyurethane Thermoplastics Containing Trisilanol Isobutyl POSS. Journal of Nanomaterials, 2012, 2012, 1-8.	2.7	26
54	Crosslinking Kinetics of Blends of Ethylene Vinyl Acetate and Ground Tire Rubber. Journal of Elastomers and Plastics, 2009, 41, 175-189.	1.5	25

#	Article	IF	CITATIONS
55	Influence of a microcomposite and a nanocomposite on the properties of an epoxy-based powder coating. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2011, 528, 6769-6775.	5.6	25
56	Thermoplastic polyurethane synthesis using POSS as a chain modifier. Materials Research, 2012, 15, 698-704.	1.3	25
57	Analysis of curaua/glass hybrid interlayer laminates. Journal of Reinforced Plastics and Composites, 2014, 33, 472-478.	3.1	25
58	Mechanical and dynamic mechanical properties of polystyrene composites reinforced with cellulose fibers. Journal of Thermoplastic Composite Materials, 2017, 30, 1242-1254.	4.2	24
59	A study on adsorption isotherm and kinetics of petroleum by cellulose cryogels. Cellulose, 2019, 26, 1231-1246.	4.9	24
60	Effect of natural oils on the thermal stability and degradation kinetics of recycled polypropylene wood flour composites. Polymer Composites, 2014, 35, 1935-1942.	4.6	23
61	Degradation kinetic of epoxy nanocomposites containing different percentage of epoxycyclohexyl—POSS. Polymer Composites, 2012, 33, 1224-1232.	4.6	22
62	Dynamic mechanical analysis of recycled polystyrene composites reinforced with wood flour. Journal of Applied Polymer Science, 2012, 125, 935-942.	2.6	22
63	Recycling and reuse of waste from electricity distribution networks as reinforcement agents in polymeric composites. Waste Management, 2013, 33, 1667-1674.	7.4	21
64	Effects of alkaline treatment and kinetic analysis of agroindustrial residues from grape stalks and yerba mate fibers. Journal of Thermal Analysis and Calorimetry, 2020, 139, 3275-3286.	3.6	21
65	Characterization of ground SBR scraps from shoe industry. Materials Research, 2008, 11, 81-84.	1.3	20
66	Mechanical and dynamicâ€mechanical properties of silaneâ€treated graphite nanoplatelet/epoxy composites. Journal of Applied Polymer Science, 2018, 135, 46724.	2.6	20
67	Dynamic mechanical properties of curaua composites. Journal of Applied Polymer Science, 2012, 125, E110.	2.6	19
68	Effect of curauÃi fiber content on the properties of poly(hydroxybutyrateâ€∢i>coâ€valerate) composites. Polymer Composites, 2013, 34, 450-456.	4.6	19
69	Thermal and Mechanical Investigation of Interlaminate Glass/Curaua Hybrid Polymer Composites. Journal of Natural Fibers, 2017, 14, 271-277.	3.1	19
70	Poly(lactic acid) foams reinforced with cellulose micro and nanofibers and foamed by chemical blowing agents. Journal of Cellular Plastics, 2018, 54, 577-596.	2.4	19
71	Influence of the Addition of Montmorillonite in an Epoxy Powder Coating Applied on Carbon Steel. Materials Research, 2015, 18, 897-903.	1.3	18
72	From cellulose to graphene-like porous carbon nanosheets. Microporous and Mesoporous Materials, 2021, 323, 111217.	4.4	18

#	Article	IF	CITATIONS
73	Influence of Composition and Crosslinking on Mechanical and Thermal Properties of Recycled Polyethylene/EVA Mixtures. Progress in Rubber, Plastics and Recycling Technology, 2006, 22, 69-87.	1.8	17
74	Obtenção e caracterização de compósitos utilizando poliestireno como matriz e resÃduos de fibras de algodão da indústria têxtil como reforço. Polimeros, 2011, 21, 271-279.	0.7	17
75	Observations of the effects of different chemical blowing agents on the degradation of poly(lactic) Tj ETQq1 1 0.	784314 rg 1.3	BT/Overlack
76	Dynamic mechanical properties and correlation with dynamic fragility of sisal reinforced composites. Polymer Composites, 2015, 36, 161-166.	4.6	17
77	Influence of Fibre Treatment on the Characteristics of Buriti and Ramie Polyester Composites. Polymers and Polymer Composites, 2017, 25, 247-256.	1.9	17
78	Effect of addition of clay minerals on the properties of epoxy/polyester powder coatings. Polimeros, 2018, 28, 355-367.	0.7	17
79	Characterization of EVA Residues from the Shoe Industry and Post-Consumer Urban-Waste Polyethylenes. Frontiers in Forests and Global Change, 2005, 24, 139-158.	1.1	16
80	Relationship between processing method and microstructural and mechanical properties of poly(ethylene terephthalate)/short glass fiber composites. Journal of Applied Polymer Science, 2008, 109, 3266-3274.	2.6	16
81	Biodegradable composites: Morphological, chemical, thermal, and mechanical properties of composites of poly(hydroxybutyrateâ€ <i>co</i> â€hydroxyvalerate) with curaua fibers after exposure to simulated soil. Journal of Applied Polymer Science, 2014, 131, .	2.6	16
82	Production of Carbon Foams from Rice Husk. Materials Research, 2019, 22, .	1.3	16
83	Characterization of hybrid composites produced with mats made using different methods. Materials Research, 2009, 12, 433-436.	1.3	15
84	Degradation kinetics of ethylene propylene diene terpolymer residues devulcanized by microwaves. Journal of Elastomers and Plastics, 2014, 46, 69-83.	1.5	15
85	Isolation and Characterisation of Cellulose Nanowhiskers from Microcrystalline Cellulose Using Mechanical Processing. Polymers and Polymer Composites, 2017, 25, 563-570.	1.9	15
86	Investigation of cure kinetics in epoxy/multiwalled carbon nanotube nanocomposites. Journal of Applied Polymer Science, 2014, 131, .	2.6	14
87	Textile waste as precursors in nanocrystalline cellulose synthesis. Cellulose, 2021, 28, 6967-6981.	4.9	14
88	Influência do Tratamento QuÃmico da Fibra de Bananeira em CompÃ3sitos de Poli(etileno-co-acetato de) Tj ETQ0	0.0 o rgB	T /Qverlock I
89	Desvulcanização do resÃduo de terpolÃmero de etileno-propileno-dieno (EPDM-r) por micro-ondas. Polimeros, 2010, 20, 165-169.	0.7	13

⁹⁰Dynamic Vulcanization of HDPE/EVA Blend Using Silane. Journal of Elastomers and Plastics, 2010, 42,
561-575.1.513

#	Article	IF	CITATIONS
91	The photodegradation and biodegradation of rEPS/curaua fiber composites. Polymer Composites, 2013, 34, 967-977.	4.6	13
92	Effect of sonication and clay content on the properties of unsaturated polyester/montmorillonite nanocomposites. Journal of Composite Materials, 2017, 51, 187-197.	2.4	13
93	Development of acrylicâ€based powder coatings with incorporation of montmorillonite clays. Journal of Applied Polymer Science, 2017, 134, 45031.	2.6	13
94	Aerogel preparation from short cellulose nanofiber of the <i>Eucalyptus</i> species. Journal of Cellular Plastics, 2017, 53, 503-512.	2.4	13
95	Mechanical and ballistic analysis of aramid/vinyl ester composites. Journal of Composite Materials, 2018, 52, 289-299.	2.4	13
96	Degradation kinetics and lifetime prediction for polystyrene/nanocellulose nanocomposites. Journal of Thermal Analysis and Calorimetry, 2022, 147, 879-890.	3.6	13
97	Enhancing thermal and dynamicâ€mechanical properties of epoxy reinforced by aminoâ€functionalized microcrystalline cellulose. Journal of Applied Polymer Science, 2021, 138, 51329.	2.6	13
98	Comparative analysis among coating methods of flexible polyurethane foams with graphene oxide. Journal of Molecular Liquids, 2018, 271, 74-79.	4.9	12
99	The role of CaO and its influence on chlorine during the thermochemical conversion of shredder residue. Chemical Engineering Research and Design, 2019, 122, 58-67.	5.6	12
100	Cellulose/Biochar Cryogels: A Study of Adsorption Kinetics and Isotherms. Langmuir, 2021, 37, 3180-3188.	3.5	12
101	Thermal, Chemical, and Morphological Characterization of Microcellular Polyurethane Elastomers. Journal of Elastomers and Plastics, 2009, 41, 323-338.	1.5	11
102	Degradation kinetics of vulcanized ethylene–propylene–diene terpolymer residues. Journal of Applied Polymer Science, 2011, 122, 1053-1057.	2.6	11
103	Performance of poly(ethylene―co â€vinyl acetate) nanocomposites using distinct clays. Journal of Applied Polymer Science, 2012, 125, E462.	2.6	11
104	Influence of chemical treatments on cellulose fibers for use as reinforcements in poly(ethyleneâ€ <i>co</i> â€vinyl acetate) composites. Polymer Composites, 2016, 37, 1991-2000.	4.6	11
105	Mechanical and dynamic-mechanical properties of silanized graphene oxide/epoxy composites. Journal of Polymer Research, 2019, 26, 1.	2.4	11
106	Carbon foam production by biomass pyrolysis. Journal of Porous Materials, 2020, 27, 1119-1125.	2.6	11
107	Kinetic evaluation of tobacco stalk waste exposed to alkaline surface treatment under different conditions. Cellulose, 2021, 28, 2053-2073.	4.9	11
108	Caracterização de compósitos produzidos com polietileno de alta densidade (HDPE) e serragem da indústria moveleira. Revista Arvore, 2008, 32, 299-310.	0.5	10

#	Article	IF	CITATIONS
109	Mechanical behavior and correlation between dynamic fragility and dynamic mechanical properties of curaua fiber composites. Polymer Composites, 2013, 35, n/a-n/a.	4.6	10
110	Behavior in simulated soil of recycled expanded polystyrene/waste cotton composites. Materials Research, 2014, 17, 275-283.	1.3	10
111	Obtenção de espumas flexÃveis de poliuretano com celulose de Pinus elliottii. Polimeros, 2017, 27, 27-34.	0.7	10
112	Effect of the Incorporation of Micro and Nanocellulose Particles on the Anticorrosive Properties of Epoxy Coatings Applied on Carbon Steel. Materials Research, 2018, 21, .	1.3	10
113	Grape stalk fibers as reinforcing filler for polymer composites with a polystyrene matrix. Journal of Applied Polymer Science, 2019, 136, 47427.	2.6	10
114	Thermal and dynamic mechanical behavior of epoxy composites reinforced with post onsumed yerba mate. Journal of Applied Polymer Science, 2021, 138, 50438.	2.6	10
115	New Reclaiming Process of Thermoset Polyurethane Foam and Blending with Polyamide-12 and Thermoplastic Polyurethane. Journal of Elastomers and Plastics, 2009, 41, 303-322.	1.5	9
116	Influence of glass and sisal fibers on the cure kinetics of unsaturated polyester resin. Materials Research, 2012, 15, 650-656.	1.3	9
117	Poly(3-hydroxybutyrate- <i>co</i> -3-hydroxyvalerate)/wood powder biocomposites: Thermal and mechanical properties and water absorption profile. Journal of Reinforced Plastics and Composites, 2014, 33, 741-748.	3.1	9
118	Effect of glycidylisobutyl–POSS on the thermal degradation of the epoxy resin. Journal of Materials Science, 2015, 50, 3697-3705.	3.7	9
119	The physical perspective on the solid and molten states associated with the mechanical properties of ecoâ€friendly HDPE/ <i><scp>P</scp>inus taeda</i> woodâ€plastic composites. Journal of Applied Polymer Science, 2016, 133, .	2.6	9
120	Thermal and fire retardancy studies of clayâ€modified unsaturated polyester/glass fiber composites. Polymer Composites, 2017, 38, 2743-2752.	4.6	9
121	Evaluation of the Mechanic and Electrochemical Properties of an Epoxy Coating with Addition of Different Polyhedral Oligomeric Silsesquioxanes (POSS) Applied on Substrate of Low Alloy Steel. Materials Research, 2017, 20, 1388-1401.	1.3	9
122	A study of paint sludge deactivation by pyrolysis reactions. Brazilian Journal of Chemical Engineering, 2003, 20, 63-68.	1.3	9
123	Comparative study between poly(ethylene-co-vinyl acetate) - EVA expanded composites filled with banana fiber and wood flour. Materials Research, 2014, 17, 1535-1544.	1.3	8
124	Sorbent system based on organosilane-coated polyurethane foam for oil spill clean up. Polymer Bulletin, 2021, 78, 1423-1440.	3.3	8
125	Silica aerogel reinforced with cellulose nanofibers. Journal of Porous Materials, 2021, 28, 1325-1333.	2.6	8
126	Extraction of Nanocellulose from Yerba Mate Residues Using Steam Explosion, TEMPO-mediated Oxidation and Ultra-fine Friction Grinding. Journal of Natural Fibers, 2022, 19, 10539-10549.	3.1	8

#	Article	IF	CITATIONS
127	Grafting amount and structural characteristics of microcrystalline cellulose functionalized with different aminosilane contents. Cellulose, 2022, 29, 3209-3224.	4.9	8
128	The influence of ionic liquid concentration on microcrystalline cellulose modification. Carbohydrate Polymer Technologies and Applications, 2022, 3, 100211.	2.6	8
129	Hybridization effect of functionalized microcrystalline cellulose and liquid acrylonitrile butadiene rubber on epoxy. Journal of Composite Materials, 2022, 56, 2867-2877.	2.4	8
130	Tensile behavior analysis combined with digital image correlation and mechanical and thermal properties of microfibrillated cellulose fiber/ polylactic acid composites. Polymer Testing, 2022, 113, 107665.	4.8	8
131	Effects of the incorporation of lowâ€molecularâ€weight diurethanes on thermal and rheological properties of thermoplastic polyurethane. Journal of Applied Polymer Science, 2009, 112, 2896-2905.	2.6	7
132	Modification of physical properties of thermoplastic polyurethane by incorporation of Iowâ€molecularâ€weight diurethanes. Polymer Engineering and Science, 2010, 50, 2321-2328.	3.1	7
133	Influence of synthesis temperature on thermal properties of thermoplastic polyurethane prepared by torque rheometer. Polymer Engineering and Science, 2012, 52, 1678-1684.	3.1	7
134	Development and Characterization of PLA/Buriti Fibre Composites – Influence of Fibre and Coupling Agent Contents. Polymers and Polymer Composites, 2017, 25, 143-152.	1.9	7
135	Effect of molecular structures on static and dynamic compression properties of clay and amphiphilic clay/carbon nanofibers used as fillers in UHMWPE/composites for highâ€energyâ€impact loading. Journal of Applied Polymer Science, 2019, 136, 47094.	2.6	7
136	Development of multilaminar composites for vehicular ballistic protection using ultra-high molecular weight polyethylene laminates and aramid fabrics. Journal of Composite Materials, 2019, 53, 1907-1916.	2.4	7
137	Experimental and artificial neural network approach for prediction of dynamic mechanical behavior of sisal/glass hybrid composites. Polymers and Polymer Composites, 2021, 29, S1033-S1043.	1.9	7
138	Influence of the functionality of polyhedral oligomeric silsesquioxane–POSS containing glycidyl groups on the dispersion and interaction with epoxy nanocomposites. Polymer Composites, 2017, 38, E229.	4.6	6
139	Sorbent system based on acetylated microfibrillated cellulose for remediation of oil aquatic environments. Revista Materia, 2019, 24, .	0.2	6
140	Influência da Espessura nas Propriedades Mecânicas de Compósitos HÃbridos Interlaminares de Curauá / Vidro / Poliéster. Polimeros, 2014, 24, 184-189.	0.7	6
141	Thermal and Mechanical Characterization of a Terpolymer Mixture of Devulcanized Recycled Ethylene-Propylene-Diene and Low-density Polyethylene. Journal of Elastomers and Plastics, 2010, 42, 417-431.	1.5	5
142	Use of EPDMSDD as compatibilizer agent for EPDM/EPDMR blends: Rheologic, mechanical, and morphologic properties. Journal of Applied Polymer Science, 2011, 122, 948-955.	2.6	5
143	Polymerization kinetics of polyurethanes containing trisilanol isooctyl polyhedral oligomeric silsesquioxane. Journal of Elastomers and Plastics, 2014, 46, 594-610.	1.5	5
144	Nanocomposites foams of poly(ethylene-co-vinyl acetate) with short and long nanocellulose fibers and foaming with supercritical CO2. Polymer Bulletin, 2018, 75, 1789-1807.	3.3	5

#	Article	IF	CITATIONS
145	Obtaining Hydrophobic Aerogels of Unbleached Cellulose Nanofibers of the Species <i>Eucalyptus</i> sp. and <i>Pinus elliottii</i> . Journal of Nanomaterials, 2018, 2018, 1-11.	2.7	5
146	Influence on the cross-linking and plasticization degree of poly(ethylene-co-vinyl acetate) and evaluation of expansion capacity to the production of foams with supercritical CO ₂ . Progress in Rubber, Plastics and Recycling Technology, 2019, 35, 23-40.	1.8	5
147	The effect of fluorination of aramid fibers on vinyl ester composites. Polymer Composites, 2019, 40, 2095-2102.	4.6	5
148	Avaliação das propriedades mecânicas e morfológicas de compósitos de PEAD com pó de Pinus taeda alumina calcinada. Polimeros, 2015, 25, 408-413.	e 0.7	4
149	Influence of different concentrations of glycidylisobutylâ€ <scp>POSS</scp> on the glass transition of cured epoxy resin. Journal of Applied Polymer Science, 2015, 132, .	2.6	4
150	Dynamic mechanical properties and the dynamic fragility concept applied to vegetal fiber on vegetal composite materials. Journal of Composite Materials, 2016, 50, 2469-2475.	2.4	4
151	Influence of cellulose nanofiber content on the expansion of polystyrene nanocomposites expanded by supercritical CO2. Polymer Bulletin, 2018, 75, 5809-5824.	3.3	4
152	Performance evaluation of natural catalysts during the thermochemical conversion of poultry litter. Chemical Engineering Research and Design, 2019, 131, 144-151.	5.6	4
153	Production and characterization of cellulose nanocrystals/ acrylonitrile butadiene styrene nanocomposites. Journal of Composite Materials, 2020, 54, 4207-4214.	2.4	4
154	Characterization of expanded polystyrene and its composites by supercritical carbon dioxide foaming approach. Journal of Porous Materials, 2021, 28, 1081-1095.	2.6	4
155	Changes in the rheometric, morphological and mechanical properties of nitrile rubber composites by the use of different concentrations of cellulose nanofibers. Journal of Elastomers and Plastics, 2021, 53, 1138-1155.	1.5	4
156	Comportamento térmico de compósitos de poliestireno reciclado reforçado com celulose de bagaço de cana. Revista Materia, 2019, 24, .	0.2	4
157	Thermal Degradation Kinetics and Lifetime Prediction of Cellulose Biomass Cryogels Reinforced by its Pyrolysis Waste. Materials Research, 0, 25, .	1.3	4
158	Morphological Analysis of Polyethylene Foams with Post-use Material Incorporated. Polymer Bulletin, 2007, 59, 83-90.	3.3	3
159	Epoxy-Montmorillonite Nanocomposites Applied to Powder Coatings. International Polymer Processing, 2011, 26, 478-483.	0.5	3
160	Influence of Processing Conditions on Productivity, Thermal and Rheological Properties of Reprocessed Low Density Polyethylene. International Polymer Processing, 2011, 26, 383-387.	0.5	3
161	Influence of screw speed on the mechanical and rheological properties of poly(ethylene-co -vinyl) Tj ETQq1 1	0.784314 rgBT 4.6] Overlock]
162	Influence of the Type of Epoxy Resin and Concentration of Glycidylisobutyl-POSS in the Properties of	1.9	3

Nanocomposites. Polymers and Polymer Composites, 2017, 25, 593-602.

#	Article	IF	CITATIONS
163	Evaluation of the degradation of HDPE hybrid composites using wood flour from CCA-treated poles, and recycled ceramic insulators. Journal of Thermoplastic Composite Materials, 2019, 32, 1677-1690.	4.2	3
164	Effect of carbonaceous nanofillers and triblock copolymers on the toughness of epoxy resin. Polymer Bulletin, 2020, 78, 5467.	3.3	3
165	Influence of surface treatments and coupling agents on the thermal and thermoâ€mechanical properties of yerba mate/postâ€consumer polypropylene composites. Polymer Composites, 2021, 42, 4596-4606.	4.6	3
166	Effect of different surface treatments on polypropylene composites reinforced with yerba mate fibers: Physical, mechanical, chemical, and morphological properties. Journal of Applied Polymer Science, 2021, 138, 51350.	2.6	3
167	Thermal Degradation of Thermosetting Nanocomposites. Engineering Materials, 2015, , 51-79.	0.6	3
168	Green compounds of SBR with nanofibrilated cellulose and palm oil in replacement to traditionally compounds used. Journal of Elastomers and Plastics, 2022, 54, 635-655.	1.5	3
169	CO2 adsorption by cryogels produced from poultry litter wastes. Polimeros, 2022, 32, .	0.7	3
170	Efeito da concentração de segmentos rÃgidos nas propriedades fÃsico-mecânicas, quÃmicas e na morfologia de elastômeros microcelulares de poliuretano. Polimeros, 2007, 17, 234-239.	0.7	2
171	Estudo do reprocessamento de polietileno de baixa densidade (PEBD) reciclado do processamento de extrusão de filmes tubulares. Polimeros, 2010, 20, 269-274.	0.7	2
172	Efeito de EPDM modificado nas propriedades mecânicas e no processamento de composições de EPDM contendo resÃduo de EPDMR. Polimeros, 2012, 22, 22-27.	0.7	2
173	Thermal and Rheological Properties of Poly(ethylene-co-vinyl acetate) (EVA) Nanoclay. , 2014, , 129-152.		2
174	Study on the recycling of waste PVC compounds from electrical wires. AIP Conference Proceedings, 2014, , .	0.4	2
175	Desenvolvimento de biocompósitos de poli(L-ácido láctico) (PLLA) com serragem de madeira. Revista Materia, 2017, 22, .	0.2	2
176	Influence of the incorporation of different chemically functionalized carbon nanotubes in polyurethane resin applied on aluminum. Journal of Polymer Engineering, 2019, 39, 762-768.	1.4	2
177	Influence of the addition of carbon structures in cellulose cryogels. Journal of Porous Materials, 2021, 28, 279-288.	2.6	2
178	Thermal properties and curing kinetics of epoxy powder coatings containing graphene nanoplatelets. Korean Journal of Chemical Engineering, 2021, 38, 1946-1955.	2.7	2
179	The Use of the Artificial Neural Network (ANN) for Modeling of Thermogravimetric Curves of Tobacco Stalk Waste Exposed to Alkaline Treatment. Journal of Natural Fibers, 2022, 19, 12119-12128.	3.1	2
180	Mechanical properties of foams comprising virgin and waste polyethylene. Polymer Bulletin, 2007, 59, 677-683.	3.3	1

#	Article	IF	CITATIONS
181	Influence of different organomodified clays on the viscoelastic response of ethylene vinyl acetate//poly(vinyl chloride)/organoclay nanocomposites. Journal of Elastomers and Plastics, 2015, 47, 636-646.	1.5	1
182	Propriedades térmicas de compósitos de acrilonitrila-butadieno-estireno (ABS) e fibras de celulose modificadas com nanopartÃculas de sÃŀica (SiO2). Revista Materia, 2020, 25, .	0.2	1
183	Epoxy resin/graphene nanoplatelets composites applied to galvanized steel with outstanding microwave absorber performance. Journal of Polymer Engineering, 2022, 42, 695-702.	1.4	1
184	Evaluation of mechanical properties and physical interactions of a ternary blend of poly(ethyleneâ€ <i>co</i> â€octene)/poly(ethyleneâ€ <i>co</i> â€vinyl acetate)/poly(vinyl chloride) in the molten state. Journal of Applied Polymer Science, 2013, 129, 1117-1123.	2.6	0
185	INFLUENCE OF COCONUT SHELL ADDITION ON PHYSICO-MECHANICAL PROPERTIES OF WOOD PLASTIC COMPOSITES1. Revista Arvore, 2017, 41, .	0.5	0
186	Analysis of Compression Resistance and Oil Adsorption Capacity of Cellulose/NaOH Cryogels. Journal of Renewable Materials, 2019, 7, 227-234.	2.2	0